概述
Java程序员进行并发编程时,相比于其他语言的程序员而言要倍感幸福,因为并发编程大师Doug Lea不遗余力地位Java开发者提供了非常多的并发容器和框架。本章让我们一起来见识一下大师操刀编写的并发容器和框架,并通过每节的原理分析一起来学习如何设计出精妙的并发程序。
ConcurrentHashMap的实现原理与使用
ConcurrentHashMap是线程安全且高效的HashMap。下面我们一起研究一下该容器时如何在保证线程安全的同时又能保证高效的操作。
为什么要使用ConcurrentHashMap
在并发编程中使用HashMap会导致多线程间数据不可见性。而使用线程安全的HashTable效率又非常低下,基于以上两个原因,便有了ConcurrentHashMap的登场机会。
- 线程不安全的HashMap
- 效率低下的HashTable
HashTable容器使用synchronized来保证线程安全,但在线程竞争激烈的情况下HashTable的效率非常低下。因为当一个线程访问HashTable的同步方法时,其他线程也访问HashTable的同步方法,会进入阻塞或者轮询状态。如线程1使用put进行元素添加,线程2不但不能使用put方法添加元素,也不能用get方法来获取元素,所以竞争越激烈效率越低。
- ConcurrentHashMap的锁分段技术可有效提升并发访问率
HashTable容器在竞争激烈的并发环境下表现出效率低下的原因是所有访问HashTable的线程都必须竞争同一把锁,加入容器里有多把锁,每一把锁用于锁容器其中的一部分数据,那么当多线程访问容器里不同数据段的数据时,线程间就不会存在锁竞争,从而可以有效提高并发访问效率,这就是ConcurrentHashMap所使用的锁分段技术。首先将数据分成一段一段地存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一段数据的时候,其他段的数据也能被其他线程访问。
ConcurrentHashMap结构
ConcurrentHashMap是由Segment数组结构和HashEntry数组结构组成。Segment是一种可重入锁(ReentrantLock),在ConcurrentHashMap里扮演锁的角色;HashEntry则用于存储键值对数据。在Java1.7中,一个ConcurrentHashMap里包含一个Segment数组。Segment的结构和HashMap类似,是一种数组和链表结构。一个Segment里包含一个HashEntry数组,每个HashEntry是一个链表结构的元素,每个Segment守护着一个HashEntry数组里的元素,当对HashEntry数组的数据进行修改时,必须首先获得与它对应的Segment锁。
Java1.7的ConcurrentHashMap数据结构:
ConcurrentHashMap可以做到读取数据不加锁,并且其内部的结构可以让其在进行写操作的时候能够将锁的粒度保持地尽量地小,允许多个修改操作并发进行,其关键在于使用了锁分段技术。它使用了多个锁来控制对hash表的不同部分进行的修改。对于JDK1.7版本的实现, ConcurrentHashMap内部使用段(Segment)来表示这些不同的部分,每个段其实就是一个小的Hashtable,它们有自己的锁。只要多个修改操作发生在不同的段上,它们就可以并发进行。JDK1.8的实现降低锁的粒度,JDK1.7版本锁的粒度是基于Segment的,包含多个HashEntry,而JDK1.8锁的粒度就是HashEntry(首节点)。
JAVA7之前ConcurrentHashMap主要采用锁机制,在对某个Segment进行操作时,将该Segment锁定,不允许对其进行非查询操作,而在JAVA8之后采用CAS无锁算法,这种乐观操作在完成前进行判断,如果符合预期结果才给予执行,对并发操作提供良好的优化。
ConcurrentHashMap的缺陷
ConcurrentHashMap 是设计为非阻塞的。在更新时会局部锁住某部分数据,但不会把整个表都锁住。同步读取操作则是完全非阻塞的。好处是在保证合理的同步前提下,效率很高。坏处是严格来说读取操作不能保证反映最近的更新。例如线程A调用putAll写入大量数据,期间线程B调用get,则只能get到目前为止已经顺利插入的部分数据。
ConcurrentHashMap在JDK 7和8之间的区别
- JDK1.8的实现降低锁的粒度,JDK1.7版本锁的粒度是基于Segment的,包含多个HashEntry,而JDK1.8锁的粒度就是HashEntry(首节点)。
- JDK1.8版本的数据结构变得更加简单,使得操作也更加清晰流畅,因为已经使用synchronized来进行同步,所以不需要分段锁的概念,也就不需要Segment这种数据结构了,由于粒度的降低,实现的复杂度也增加了。
- JDK1.8使用红黑树来优化链表,基于长度很长的链表的遍历是一个很漫长的过程,而红黑树的遍历效率是很快的,代替一定阈值的链表,这样形成一个最佳拍档。
ConcurrentLinkedQueue
在并发编程中,有时候需要使用线程安全的队列。如果要实现一个线程安全的队列有两种方式:一种是使用阻塞算法,另一种是使用非阻塞算法。使用阻塞算法可以用一个锁(入队和出队用同一把锁)或者两个锁(入队和出队用不同的锁)等方式来实现。非阻塞的实现方式则可以使用循环CAS的方式来实现。本节一起来研究一下Doug Lea是如何使用非阻塞的方式来实现线程安全队列ConcurrentLinkedQueue的。
ConcurrentLinkedQueue是一个基于链接节点的无界线程安全队列,它采用先进先出的规则对节点进行排序,当我们添加一个元素的时候,他会添加到队列的尾部;当我们获取一个元素时,它会返回队列头部的元素。它采用“wait-free”算法(即CAS算法)来实现。
Java中的阻塞队列
本节将介绍什么是阻塞队列,以及Java中阻塞队列的4中储粮方式,并介绍Java7中提供的7中阻塞队列。
什么是阻塞队列
阻塞队列(BlockingQueue)是一个支持两个附加操作的队列。这两个附加的操作支持阻塞的插入和移除方法。
- 支持阻塞的插入方法:意思当队列满时,队列会阻塞插入元素的线程,直到队列不满。
- 支持阻塞的移除方法:意思是在队列为空时,获取元素的线程会等待队列变为空。
阻塞队列常用于生产者和消费者的场景,生产者是向队列里添加元素的线程,消费者是从队列里取元素的线程。阻塞队列就是生产者用来存放元素、消费者用来获取元素的容器。
在阻塞队列不可用时,这两个附加操作提供了4种处理方式,如下:
- 抛出异常:当队列满时,如果再往队列里插入元素,会抛出IllegalStateException(“Queue full”)异常。当队列空时,从队列里获取元素会抛出NoSuchElementException异常。
- 返回特殊值:当队列插入元素时,会返回元素是否插入成功,成功返回true。如果是移除方法,则是从队列里取出一个元素,如果没有则返回null。
- 一直阻塞:当阻塞队列满时,如果生产者线程往队列里put元素,队列会一直阻塞生产者线程,直到队列可用或者响应中断退出。当队列空时,如果消费者线程从队列里take元素,队列会阻塞住消费者消除,直到队列不为空。
- 超时退出:当阻塞队列满时,如果生产者线程往队列里插入元素,队列会阻塞生产者线程一段时间,如果超过了指定的时间,生产者线程就好退出。
这两个附加操作的4种处理方式不方便记忆,所以找了一下这几个方法的规律。put和take分别尾首含有字母t,offer和poll都含有字母o。
Java里的阻塞队列
JDK7提供了7个阻塞队列,如下。
- ArrayBlockingQueue:一个由数组结构组成的有界阻塞队列。
- LinkedBlockingQueue:一个由链表结构组成的有界阻塞队列。
- PriorityBlockingQueue:一个支持优先级排序的无界阻塞队列。
- DelayQueue:一个使用优先级队列实现的无界阻塞队列。
- SynchronousQueue:一个不存储元素的阻塞队列。
- LinkedTransferQueue:一个由链表结构组成的无界阻塞队列。
- LinkedBlockingDeque:一个由链表结构组成的双向阻塞队列。
SynchronousQueue
Synchronous是一个不存储元素的阻塞队列。每一个put操作必须等待一个take操作,否则不能继续添加元素。
它支持公平访问队列。默认情况下线程采用非公平策略访问队列(非公平指最先被阻塞的线程可能不是最先能访问队列的线程)。
SynchronousQueue可以看成是一个传球手,负责把生产者线程处理的数据直接传递给消费者线程。队列本身并不存储任何元素,非常适合传递性场景。Synchronized的吞吐量高于LinkedBlocingQueue和ArrayBlockingQueue。
Fork/Join框架
Fork/Join框架是Java7提供的一个用于并行执行任务的框架,是一个把大任务拆分成若干小任务,最后汇总每个小任务结果后得到大任务结果的框架。
参考:线程池之ForkJoinPool
小结
本章介绍了Java中提供的各种并发容器和框架,并分析了该容器和框架的实现原理,从中我们能够领略到大师级的设计思路,学以致用。
参考
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/100131.html