0的0次方没有意义。
是否有意义,要看属于哪个学习阶段了,在初等数学中,比如初中,高中是没有意义的,在高等及以上,就不能简单说有无意义,例如采用极限思维,趋近于零。
当越接近零时,越接近1,但是显然(-0.1)^(-0.1)是没有意义的,因为在实数域中,负值没有偶次方根。
实际上可以求得:lim(x→0+) x^x = 1,换句话说,0^0如果从正数方面趋近,用极限思维的话是收敛于1的;而从负数方面趋近是没有意义的。
0次方相关延伸:
数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的有理数和无理数。
具体来讲:由于计数的需要,人类从现实事物中抽象出了自然数,它是数学中一切“数”的起点。自然数对减法不封闭,为了对减法封闭,将数系扩充至整数;而为了对除法不封闭,而为了对除法封闭,将数系扩充至有理数。
对于开方运算不封闭,将数系扩充至代数数(实际上代数数是一个更广的概念),另一方面,对于极限运算不封闭,又将数系扩充到实数。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/102888.html