计算方法 | 埃特金加速收敛方法的详细推导

导读:本篇文章讲解 计算方法 | 埃特金加速收敛方法的详细推导,希望对大家有帮助,欢迎收藏,转发!站点地址:www.bmabk.com

计算方法 | 埃特金加速收敛方法的详细推导

【x* = f(x*)是因为f(x)是你构造出来的x=f(x)的函数】

微分中值定理是一系列中值定理总称,是研究函数的有力工具,其中最重要的内容是拉格朗日定理,可以说其他中值定理都是拉格朗日中值定理的特殊情况或推广。微分中值定理反映了导数的局部性与函数的整体性之间的关系,应用十分广泛。

拉格朗日定理

内容:

如果函数 f(x) 满足:

1)在闭区间[a,b]上连续;

2)在开区间(a,b)内可导。

那么:在(a,b)内至少有一点ξ(a<ξ<b),

使等式 f(b)-f(a)=f′(ξ)(b-a) 成立。

(或存在0<h<1,使f(b)-f(a)=f′(a+h(b-a))(b-a) 成立

拉格朗日中值定理的几何意义是:曲线上必然存在至少一点,过该点的切线的斜率和连接曲线(a,b)的割线的斜率相同;或者说,曲线上必然存在至少一点可以做割线(a,b)的平行线

计算方法 | 埃特金加速收敛方法的详细推导

计算方法 | 埃特金加速收敛方法的详细推导

计算方法 | 埃特金加速收敛方法的详细推导

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/103058.html

(0)
小半的头像小半

相关推荐

极客之音——专业性很强的中文编程技术网站,欢迎收藏到浏览器,订阅我们!