一、树形结构
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:
- 有一个特殊的节点,称为根节点,根节点没有前驱节点;
- 除根节点外,其余节点被分成M(M > 0)个互不相交的集合T1、T2、…、Tm,其中每一个集合 Ti (1 <= i<= m)又是一棵与树类似的子树。
- 每棵子树的根节点有且只有一个前驱,可以有0个或多个后继;
- 树是递归定义的。
相关概念
- 节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的度为3;
- 树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为3;
- 叶子节点或终端节点:度为0的节点称为叶节点; 如上图:E、F、I…等节点为叶节点;
- 双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点;
- 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点;
- 根结点:一棵树中,没有双亲结点的结点;如上图:A
- 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
- 树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
- 非终端节点或分支节点:度不为0的节点; 如上图:B、C、D、G节点为分支节点;
- 兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C、D是兄弟节点;
- 堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、J互为兄弟节点;
- 节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先;
- 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙;
- 森林:由m(m>=0)棵互不相交的树的集合称为森林。
二、二叉树
2.1 概念
一棵二叉树是结点的一个有限集合,该集合或者为空,或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。
2.2 二叉树的特点:
- 每个结点最多有两棵子树,即二叉树不存在度大于2的结点。
- 二叉树的子树有左右之分,其子树的次序不能颠倒。
2.3 特殊的二叉树
(1)满二叉树:
一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是(2^k) -1 ,则它就是满二叉树。
(2)完全二叉树:
完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
PS:完全二叉树的底部是连续的,满二叉树一定是完全二叉树
2.4 二叉树的性质
- 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2i-1 (i>0)个结点;
- 若规定只有根节点的二叉树的深度为1,则深度为K的二叉树的最大结点数是2k-1 (k>=0); 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1;
- 具有n个结点的完全二叉树的深度k为log2(n+1) 上取整;
- 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i的结点有:
- 若i>0,双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点;
- 若2i+1<n,左孩子序号:2i+1,否则无左孩子;
- 若2i+2<n,右孩子序号:2i+2,否则无右孩子;
如:假设一棵完全二叉树中总共有1000个节点,则该二叉树中__500___个叶子节点,__500___个非叶子节点,__1___个节点只有左孩子,__0___个只有右孩子。
题解:将该二叉树节点缩小100倍,变为该完全二叉树中总共有10个节点,由性质2可得深度K为:4,前三层共有7个节点,则最后一层有10-7=3个节点,由性质1的第三层有4个节点,其中有2个节点上面有子节点,剩余2个为叶子结点,则该二叉树共有3+2=5个叶子结点,扩大100倍为500个叶子结点,则剩余的就位非叶子结点。有相关分析可知该二叉树有1个节点只有左孩子,0个节点只有右孩子。
2.5 二叉树的存储
二叉树的存储结构分为:顺序存储和类似于链表的链式存储。
二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式,具体如下:
// 孩子表示法
class Node {
int val; // 数据域
Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}
// 孩子双亲表示法
class Node {
int val; // 数据域
Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
Node parent; // 当前节点的根节点
}
2.6 二叉树的遍历
遍历(Traversal)
是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。访问结点所做的操作依赖于具体的应用问题(比如:打印节点内容、节点内容加1)。
遍历是二叉树上最重要的操作之一,是二叉树上进行其它运算之基础。
在遍历二叉树时,如果没有进行某种约定,每个人都按照自己的方式遍历,得出的结果就比较混乱,如果按照某种规则进行约定,则每个人对于同一棵树的遍历结果肯定是相同的。
如果N
代表根节点,L
代表根节点的左子树,R
代表根节点的右子树,则根据遍历根节点的先后次序有以下遍历方式:
NLR
:前序遍历(Preorder Traversal
亦称先序遍历)——访问根结点—>根的左子树—>根的右子树。LNR
:中序遍历(Inorder Traversal
)——根的左子树—>根节点—>根的右子树。LRN
:后序遍历(Postorder Traversal
)——根的左子树—>根的右子树—>根节点。
由于被访问的结点必是某子树的根,所以N(Node)
、L(Left subtree)
和R(Right subtree)
又可解释为根、根的左子树和根的右子树。NLR
、LNR
和LRN
分别又称为先根遍历、中根遍历和后根遍历。
前序遍历:先输出父节点,再遍历左子树和右子树
中序遍历:先遍历左子树,再输出父节点,再遍历右子树
后序遍历:先遍历左子树,再遍历右子树,最后输出父节点
public class BinaryTree {
class TreeNode{
public char val;
public TreeNode left;
public TreeNode right;
public TreeNode(char val){
this.val = val;
}
}
//创建一个二叉树
public TreeNode createTree() {
TreeNode A = new TreeNode('a');
TreeNode B = new TreeNode('b');
TreeNode C = new TreeNode('c');
TreeNode D = new TreeNode('d');
TreeNode E = new TreeNode('e');
TreeNode F = new TreeNode('f');
TreeNode G = new TreeNode('g');
TreeNode H = new TreeNode('h');
A.left = B;
A.right = C;
B.left = D;
B.right = E;
E.right = H;
C.left = F;
C.right = G;
return A;
}
//前序遍历
void preOrderTraversal(TreeNode root){
if(root == null){
return;
}
System.out.print(root.val + " ");
preOrderTraversal(root.left);
preOrderTraversal(root.right);
}
// 中序遍历
void inOrderTraversal(TreeNode root){
if(root == null){
return;
}
inOrderTraversal(root.left);
System.out.print(root.val + " ");
inOrderTraversal(root.right);
}
// 后序遍历
void postOrderTraversal(TreeNode root){
if(root == null){
return;
}
postOrderTraversal(root.left);
postOrderTraversal(root.right);
System.out.print(root.val + " ");
}
public static void main(String[] args) {
BinaryTree binaryTree = new BinaryTree();
TreeNode root = binaryTree.createTree();
System.out.println();
binaryTree.preOrderTraversal(root);//前序遍历
System.out.println();
binaryTree.inOrderTraversal(root);// 中序遍历
System.out.println();
binaryTree.postOrderTraversal(root);// 后序遍历
System.out.println();
}
}
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/104936.html