题目描述
已知 n个整数 x1,x2,…,xn,以及11个整数k(k<n)。从n个整数中任选k个整数相加,可分别得到一系列的和。例如当n=4,k=3,4个整数分别为3,7,12,19时,可得全部的组合与它们的和为:
3+7+12=22
3+7+19=29
7+12+19=38
3+12+19=34
现在,要求你计算出和为素数共有多少种。
例如上例,只有一种的和为素数:3+7+19=29。
输入格式
键盘输入,格式为:
n,k(1≤n≤20,k<n)
x1,x2,…,xn (1<=xi ≤5000000)
输出格式
屏幕输出,格式为: 11个整数(满足条件的种数)。
输入输出样例
输入
4 3
3 7 12 19
输出
1
我的分析
根据本蒟蒻的经验,凡是遇到类似排列组合的多种可能的穷举问题,基本上都可以用暴力搜索解决。此题也不例外。不过要注意,本题先要求出由k个数构成的所有可能组合(无重复),而不是由k个数构成的所有可能排列,故与数选取的顺序无关,在进行深度优先搜索的时候,一定要注意避免重复哦(´・ω・`)
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/11800.html
赞 (0)