引言
Semaphore,现在普遍翻译为“信号量”,以前也曾被翻译成“信号灯”,因为类似现实生活里的红绿灯,车辆能不能通行,要看是不是绿灯。同样,在编程世界里,线程能不能执行,也要看信号量是不是允许。
信号量是由大名鼎鼎的计算机科学家迪杰斯特拉(Dijkstra)于1965年提出,在这之后的15年,信号量一直都是并发编程领域的终结者,直到1980年管程被提出来,我们才有了第二选择。目前几乎所有支持并发编程的语言都支持信号量机制,所以学好信号量还是很有必要的。
下面我们首先介绍信号量模型,之后介绍如何使用信号量,最后我们再用信号量来实现一个限流器。
信号量模型
信号量模型还是很简单的,可以简单概括为:一个计数器,一个等待队列,三个方法。在信号量模型里,计数器和等待队列对外是透明的,所以只能通过信号量模型提供的三个方法来访问它们,这三个方法分别是:init()、down()和up()。你可以结合下图来形象化地理解。
这三个方法详细的语义具体如下所示。
- init():设置计数器的初始值。
- down():计数器的值减1;如果此时计数器的值小于0,则当前线程将被阻塞,否则当前线程可以继续执行。
- up():计数器的值加1;如果此时计数器的值小于或者等于0,则唤醒等待队列中的一个线程,并将其从等待队列中移除。
这里提到的init()、down()和up()三个方法都是原子性的,并且这个原子性是由信号量模型的实现方保证的。在Java SDK里面,信号量模型是由java.util.concurrent.Semaphore实现的,Semaphore这个类能够保证这三个方法都是原子操作。
如果你觉得上面的描述有点绕的话,可以参考下面这个代码化的信号量模型。
class Semaphore{
// 计数器
int count;
// 等待队列
Queue queue;
// 初始化操作
Semaphore(int c){
this.count=c;
}
//
void down(){
this.count--;
if(this.count<0){
//将当前线程插入等待队列
//阻塞当前线程
}
}
void up(){
this.count++;
if(this.count<=0) {
//移除等待队列中的某个线程T
//唤醒线程T
}
}
}
这里再插一句,信号量模型里面,down()、up()这两个操作历史上最早称为P操作和V操作,所以信号量模型也被称为PV原语。另外,还有些人喜欢用semWait()和semSignal()来称呼它们,虽然叫法不同,但是语义都是相同的。在Java SDK并发包里,down()和up()对应的则是acquire()和release()。
如何使用信号量
通过上文,你应该会发现信号量的模型还是很简单的,那具体该如何使用呢?其实你想想红绿灯就可以了。十字路口的红绿灯可以控制交通,得益于它的一个关键规则:车辆在通过路口前必须先检查是否是绿灯,只有绿灯才能通行。这个规则和我们前面提到的锁规则是不是很类似?
其实,信号量的使用也是类似的。这里我们还是用累加器的例子来说明信号量的使用吧。在累加器的例子里面,count+=1操作是个临界区,只允许一个线程执行,也就是说要保证互斥。那这种情况用信号量怎么控制呢?
其实很简单,就像我们用互斥锁一样,只需要在进入临界区之前执行一下down()操作,退出临界区之前执行一下up()操作就可以了。下面是Java代码的示例,acquire()就是信号量里的down()操作,release()就是信号量里的up()操作。
static int count;
//初始化信号量
static final Semaphore s
= new Semaphore(1);
//用信号量保证互斥
static void addOne() {
s.acquire();
try {
count+=1;
} finally {
s.release();
}
}
下面我们再来分析一下,信号量是如何保证互斥的。假设两个线程T1和T2同时访问addOne()方法,当它们同时调用acquire()的时候,由于acquire()是一个原子操作,所以只能有一个线程(假设T1)把信号量里的计数器减为0,另外一个线程(T2)则是将计数器减为-1。对于线程T1,信号量里面的计数器的值是0,大于等于0,所以线程T1会继续执行;对于线程T2,信号量里面的计数器的值是-1,小于0,按照信号量模型里对down()操作的描述,线程T2将被阻塞。所以此时只有线程T1会进入临界区执行count+=1;。
当线程T1执行release()操作,也就是up()操作的时候,信号量里计数器的值是-1,加1之后的值是0,小于等于0,按照信号量模型里对up()操作的描述,此时等待队列中的T2将会被唤醒。于是T2在T1执行完临界区代码之后才获得了进入临界区执行的机会,从而保证了互斥性。
快速实现一个限流器
上面的例子,我们用信号量实现了一个最简单的互斥锁功能。估计你会觉得奇怪,既然有Java SDK里面提供了Lock,为啥还要提供一个Semaphore ?其实实现一个互斥锁,仅仅是 Semaphore的部分功能,Semaphore还有一个功能是Lock不容易实现的,那就是:Semaphore可以允许多个线程访问一个临界区。
现实中还有这种需求?有的。比较常见的需求就是我们工作中遇到的各种池化资源,例如连接池、对象池、线程池等等。其中,你可能最熟悉数据库连接池,在同一时刻,一定是允许多个线程同时使用连接池的,当然,每个连接在被释放前,是不允许其他线程使用的。
其实前不久,我在工作中也遇到了一个对象池的需求。所谓对象池呢,指的是一次性创建出N个对象,之后所有的线程重复利用这N个对象,当然对象在被释放前,也是不允许其他线程使用的。对象池,可以用List保存实例对象,这个很简单。但关键是限流器的设计,这里的限流,指的是不允许多于N个线程同时进入临界区。那如何快速实现一个这样的限流器呢?这种场景,我立刻就想到了信号量的解决方案。
信号量的计数器,在上面的例子中,我们设置成了1,这个1表示只允许一个线程进入临界区,但如果我们把计数器的值设置成对象池里对象的个数N,就能完美解决对象池的限流问题了。下面就是对象池的示例代码。
class ObjPool {
final List pool;
// 用信号量实现限流器
final Semaphore sem;
// 构造函数
ObjPool(int size, T t){
pool = new Vector(){};
for(int i=0; i func) {
T t = null;
sem.acquire();
try {
t = pool.remove(0);
return func.apply(t);
} finally {
pool.add(t);
sem.release();
}
}
}
// 创建对象池
ObjPool pool =
new ObjPool(10, 2);
// 通过对象池获取t,之后执行
pool.exec(t -> {
System.out.println(t);
return t.toString();
});
我们用一个List来保存对象实例,用Semaphore实现限流器。关键的代码是ObjPool里面的exec()方法,这个方法里面实现了限流的功能。在这个方法里面,我们首先调用acquire()方法(与之匹配的是在finally里面调用release()方法),假设对象池的大小是10,信号量的计数器初始化为10,那么前10个线程调用acquire()方法,都能继续执行,相当于通过了信号灯,而其他线程则会阻塞在acquire()方法上。对于通过信号灯的线程,我们为每个线程分配了一个对象 t(这个分配工作是通过pool.remove(0)实现的),分配完之后会执行一个回调函数func,而函数的参数正是前面分配的对象 t ;执行完回调函数之后,它们就会释放对象(这个释放工作是通过pool.add(t)实现的),同时调用release()方法来更新信号量的计数器。如果此时信号量里计数器的值小于等于0,那么说明有线程在等待,此时会自动唤醒等待的线程。
简言之,使用信号量,我们可以轻松地实现一个限流器,使用起来还是非常简单的。
小结
信号量在Java语言里面名气并不算大,但是在其他语言里却是很有知名度的。Java在并发编程领域走的很快,重点支持的还是管程模型。 管程模型理论上解决了信号量模型的一些不足,主要体现在易用性和工程化方面,例如用信号量解决我们曾经提到过的阻塞队列问题,就比管程模型麻烦很多,你如果感兴趣,可以课下了解和尝试一下。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/13458.html