倒排索引
- 正排索引:文档id到单词的关联关系
- 倒排索引:单词到文档id的关联关系
示例:
对以下三个文档去除停用词后构造倒排索引
image
倒排索引-查询过程
查询包含“搜索引擎”的文档
- 通过倒排索引获得“搜索引擎”对应的文档id列表,有1,3
- 通过正排索引查询1和3的完整内容
- 返回最终结果
倒排索引-组成
- 单词词典(Term Dictionary)
- 倒排列表(Posting List)
单词词典(Term Dictionary)
单词词典的实现一般用B+树,B+树构造的可视化过程网址: B+ Tree Visualization
关于B树和B+树
image
倒排列表(Posting List)
- 倒排列表记录了单词对应的文档集合,有倒排索引项(Posting)组成
- 倒排索引项主要包含如下信息:
- 文档id用于获取原始信息
- 单词频率(TF,Term Frequency),记录该单词在该文档中出现的次数,用于后续相关性算分
- 位置(Posting),记录单词在文档中的分词位置(多个),用于做词语搜索(Phrase Query)
- 偏移(Offset),记录单词在文档的开始和结束位置,用于高亮显示
image
B+树内部结点存索引,叶子结点存数据,这里的 单词词典就是B+树索引,倒排列表就是数据,整合在一起后如下所示
note:
B+树索引中文和英文怎么比较大小呢?unicode比较还是拼音呢?
image
ES存储的是一个JSON格式的文档,其中包含多个字段,每个字段会有自己的倒排索引
分词
分词是将文本转换成一系列单词(Term or Token)的过程,也可以叫文本分析,在ES里面称为Analysis
image
分词器
分词器是ES中专门处理分词的组件,英文为Analyzer,它的组成如下:
- Character Filters:针对原始文本进行处理,比如去除html标签
- Tokenizer:将原始文本按照一定规则切分为单词
- Token Filters:针对Tokenizer处理的单词进行再加工,比如转小写、删除或增新等处理
分词器调用顺序
image
Analyze API
ES提供了一个可以测试分词的API接口,方便验证分词效果,endpoint是_analyze
- 可以直接指定analyzer进行测试
image
- 可以直接指定索引中的字段进行测试
POST test_index/doc
{
"username": "whirly",
"age":22
}
POST test_index/_analyze
{
"field": "username",
"text": ["hello world"]
}
- 可以自定义分词器进行测试
POST _analyze
{
"tokenizer": "standard",
"filter": ["lowercase"],
"text": ["Hello World"]
}
预定义的分词器
ES自带的分词器有如下:
- Standard Analyzer
- 默认分词器
- 按词切分,支持多语言
- 小写处理
- Simple Analyzer
- 按照非字母切分
- 小写处理
- Whitespace Analyzer
- 空白字符作为分隔符
- Stop Analyzer
- 相比Simple Analyzer多了去除请用词处理
- 停用词指语气助词等修饰性词语,如the, an, 的, 这等
- Keyword Analyzer
- 不分词,直接将输入作为一个单词输出
- Pattern Analyzer
- 通过正则表达式自定义分隔符
- 默认是\W+,即非字词的符号作为分隔符
- Language Analyzer
- 提供了30+种常见语言的分词器
示例:停用词分词器
POST _analyze
{
"analyzer": "stop",
"text": ["The 2 QUICK Brown Foxes jumped over the lazy dog's bone."]
}
结果
{
"tokens": [
{
"token": "quick",
"start_offset": 6,
"end_offset": 11,
"type": "word",
"position": 1
},
{
"token": "brown",
"start_offset": 12,
"end_offset": 17,
"type": "word",
"position": 2
},
{
"token": "foxes",
"start_offset": 18,
"end_offset": 23,
"type": "word",
"position": 3
},
{
"token": "jumped",
"start_offset": 24,
"end_offset": 30,
"type": "word",
"position": 4
},
{
"token": "over",
"start_offset": 31,
"end_offset": 35,
"type": "word",
"position": 5
},
{
"token": "lazy",
"start_offset": 40,
"end_offset": 44,
"type": "word",
"position": 7
},
{
"token": "dog",
"start_offset": 45,
"end_offset": 48,
"type": "word",
"position": 8
},
{
"token": "s",
"start_offset": 49,
"end_offset": 50,
"type": "word",
"position": 9
},
{
"token": "bone",
"start_offset": 51,
"end_offset": 55,
"type": "word",
"position": 10
}
]
}
中文分词
- 难点
- 中文分词指的是将一个汉字序列切分为一个一个的单独的词。在英文中,单词之间以空格作为自然分界词,汉语中词没有一个形式上的分界符
- 上下文不同,分词结果迥异,比如交叉歧义问题
- 常见分词系统
安装ik中文分词插件
# 在Elasticsearch安装目录下执行命令,然后重启es
bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.3.0/elasticsearch-analysis-ik-6.3.0.zip
# 如果由于网络慢,安装失败,可以先下载好zip压缩包,将下面命令改为实际的路径,执行,然后重启es
bin/elasticsearch-plugin install file:///path/to/elasticsearch-analysis-ik-6.3.0.zip
- ik测试 – ik_smart
POST _analyze
{
"analyzer": "ik_smart",
"text": ["公安部:各地校车将享最高路权"]
}
# 结果
{
"tokens": [
{
"token": "公安部",
"start_offset": 0,
"end_offset": 3,
"type": "CN_WORD",
"position": 0
},
{
"token": "各地",
"start_offset": 4,
"end_offset": 6,
"type": "CN_WORD",
"position": 1
},
{
"token": "校车",
"start_offset": 6,
"end_offset": 8,
"type": "CN_WORD",
"position": 2
},
{
"token": "将",
"start_offset": 8,
"end_offset": 9,
"type": "CN_CHAR",
"position": 3
},
{
"token": "享",
"start_offset": 9,
"end_offset": 10,
"type": "CN_CHAR",
"position": 4
},
{
"token": "最高",
"start_offset": 10,
"end_offset": 12,
"type": "CN_WORD",
"position": 5
},
{
"token": "路",
"start_offset": 12,
"end_offset": 13,
"type": "CN_CHAR",
"position": 6
},
{
"token": "权",
"start_offset": 13,
"end_offset": 14,
"type": "CN_CHAR",
"position": 7
}
]
}
- ik测试 – ik_max_word
POST _analyze
{
"analyzer": "ik_max_word",
"text": ["公安部:各地校车将享最高路权"]
}
# 结果
{
"tokens": [
{
"token": "公安部",
"start_offset": 0,
"end_offset": 3,
"type": "CN_WORD",
"position": 0
},
{
"token": "公安",
"start_offset": 0,
"end_offset": 2,
"type": "CN_WORD",
"position": 1
},
{
"token": "部",
"start_offset": 2,
"end_offset": 3,
"type": "CN_CHAR",
"position": 2
},
{
"token": "各地",
"start_offset": 4,
"end_offset": 6,
"type": "CN_WORD",
"position": 3
},
{
"token": "校车",
"start_offset": 6,
"end_offset": 8,
"type": "CN_WORD",
"position": 4
},
{
"token": "将",
"start_offset": 8,
"end_offset": 9,
"type": "CN_CHAR",
"position": 5
},
{
"token": "享",
"start_offset": 9,
"end_offset": 10,
"type": "CN_CHAR",
"position": 6
},
{
"token": "最高",
"start_offset": 10,
"end_offset": 12,
"type": "CN_WORD",
"position": 7
},
{
"token": "路",
"start_offset": 12,
"end_offset": 13,
"type": "CN_CHAR",
"position": 8
},
{
"token": "权",
"start_offset": 13,
"end_offset": 14,
"type": "CN_CHAR",
"position": 9
}
]
}
- ik两种分词模式ik_max_word 和 ik_smart 什么区别?
-
ik_max_word: 会将文本做最细粒度的拆分,比如会将“中华人民共和国国歌”拆分为“中华人民共和国,中华人民,中华,华人,人民共和国,人民,人,民,共和国,共和,和,国国,国歌”,会穷尽各种可能的组合;
-
ik_smart: 会做最粗粒度的拆分,比如会将“中华人民共和国国歌”拆分为“中华人民共和国,国歌”。
-
自定义分词
当自带的分词无法满足需求时,可以自定义分词,通过定义Character Filters、Tokenizer和Token Filters实现
- 在Tokenizer之前对原始文本进行处理,比如增加、删除或替换字符等
- 自带的如下:
- HTML Strip Character Filter:去除HTML标签和转换HTML实体
- Mapping Character Filter:进行字符替换操作
- Pattern Replace Character Filter:进行正则匹配替换
- 会影响后续tokenizer解析的position和offset信息
Character Filters测试
POST _analyze
{
"tokenizer": "keyword",
"char_filter": ["html_strip"],
"text": ["<p>I'm so <b>happy</b>!</p>"]
}
# 结果
{
"tokens": [
{
"token": """
I'm so happy!
""",
"start_offset": 0,
"end_offset": 32,
"type": "word",
"position": 0
}
]
}
- 将原始文本按照一定规则切分为单词(term or token)
- 自带的如下:
- standard 按照单词进行分割
- letter 按照非字符类进行分割
- whitespace 按照空格进行分割
- UAX URL Email 按照standard进行分割,但不会分割邮箱和URL
- Ngram 和 Edge NGram 连词分割
- Path Hierarchy 按照文件路径进行分割
Tokenizers 测试
POST _analyze
{
"tokenizer": "path_hierarchy",
"text": ["/path/to/file"]
}
# 结果
{
"tokens": [
{
"token": "/path",
"start_offset": 0,
"end_offset": 5,
"type": "word",
"position": 0
},
{
"token": "/path/to",
"start_offset": 0,
"end_offset": 8,
"type": "word",
"position": 0
},
{
"token": "/path/to/file",
"start_offset": 0,
"end_offset": 13,
"type": "word",
"position": 0
}
]
}
- 对于tokenizer输出的单词(term)进行增加、删除、修改等操作
- 自带的如下:
- lowercase 将所有term转为小写
- stop 删除停用词
- Ngram 和 Edge NGram 连词分割
- Synonym 添加近义词的term
Token Filters测试
POST _analyze
{
"text": [
"a Hello World!"
],
"tokenizer": "standard",
"filter": [
"stop",
"lowercase",
{
"type": "ngram",
"min_gram": 4,
"max_gram": 4
}
]
}
# 结果
{
"tokens": [
{
"token": "hell",
"start_offset": 2,
"end_offset": 7,
"type": "<ALPHANUM>",
"position": 1
},
{
"token": "ello",
"start_offset": 2,
"end_offset": 7,
"type": "<ALPHANUM>",
"position": 1
},
{
"token": "worl",
"start_offset": 8,
"end_offset": 13,
"type": "<ALPHANUM>",
"position": 2
},
{
"token": "orld",
"start_offset": 8,
"end_offset": 13,
"type": "<ALPHANUM>",
"position": 2
}
]
}
自定义分词
自定义分词需要在索引配置中设定 char_filter、tokenizer、filter、analyzer等
自定义分词示例:
- 分词器名称:my_custom\
- 过滤器将token转为大写
PUT test_index_1
{
"settings": {
"analysis": {
"analyzer": {
"my_custom_analyzer": {
"type": "custom",
"tokenizer": "standard",
"char_filter": [
"html_strip"
],
"filter": [
"uppercase",
"asciifolding"
]
}
}
}
}
}
自定义分词器测试
POST test_index_1/_analyze
{
"analyzer": "my_custom_analyzer",
"text": ["<p>I'm so <b>happy</b>!</p>"]
}
# 结果
{
"tokens": [
{
"token": "I'M",
"start_offset": 3,
"end_offset": 11,
"type": "<ALPHANUM>",
"position": 0
},
{
"token": "SO",
"start_offset": 12,
"end_offset": 14,
"type": "<ALPHANUM>",
"position": 1
},
{
"token": "HAPPY",
"start_offset": 18,
"end_offset": 27,
"type": "<ALPHANUM>",
"position": 2
}
]
}
分词使用说明
分词会在如下两个时机使用:
- 创建或更新文档时(Index Time),会对相应的文档进行分词处理
- 查询时(Search Time),会对查询语句进行分词
- 查询时通过analyzer指定分词器
- 通过index mapping设置search_analyzer实现
- 一般不需要特别指定查询时分词器,直接使用索引分词器即可,否则会出现无法匹配的情况
分词使用建议
- 明确字段是否需要分词,不需要分词的字段就将type设置为keyword,可以节省空间和提高写性能
- 善用_analyze API,查看文档的分词结果
分析与分析器
分析 包含下面的过程:
- 首先,将一块文本分成适合于倒排索引的独立的 词条 ,
- 之后,将这些词条统一化为标准格式以提高它们的“可搜索性”,或者 recall
分析器执行上面的工作。 分析器 实际上是将三个功能封装到了一个包里:
字符过滤器
首先,字符串按顺序通过每个 字符过滤器 。他们的任务是在分词前整理字符串。一个字符过滤器可以用来去掉HTML,或者将 &
转化成 `and`。
分词器
其次,字符串被 分词器 分为单个的词条。一个简单的分词器遇到空格和标点的时候,可能会将文本拆分成词条。
Token 过滤器
最后,词条按顺序通过每个 token 过滤器 。这个过程可能会改变词条(例如,小写化 Quick
),删除词条(例如, 像 a`, `and`, `the
等无用词),或者增加词条(例如,像 jump
和 leap
这种同义词)。
Elasticsearch提供了开箱即用的字符过滤器、分词器和token 过滤器。 这些可以组合起来形成自定义的分析器以用于不同的目的。我们会在 自定义分析器 章节详细讨论。
内置分析器
但是, Elasticsearch还附带了可以直接使用的预包装的分析器。 接下来我们会列出最重要的分析器。为了证明它们的差异,我们看看每个分析器会从下面的字符串得到哪些词条:
"Set the shape to semi-transparent by calling set_trans(5)"
标准分析器
标准分析器是Elasticsearch默认使用的分析器。它是分析各种语言文本最常用的选择。它根据 Unicode 联盟 定义的 单词边界 划分文本。删除绝大部分标点。最后,将词条小写。它会产生
set, the, shape, to, semi, transparent, by, calling, set_trans, 5
简单分析器
简单分析器在任何不是字母的地方分隔文本,将词条小写。它会产生
set, the, shape, to, semi, transparent, by, calling, set, trans
空格分析器
空格分析器在空格的地方划分文本。它会产生
Set, the, shape, to, semi-transparent, by, calling, set_trans(5)
语言分析器
特定语言分析器可用于 很多语言。它们可以考虑指定语言的特点。例如, 英语
分析器附带了一组英语无用词(常用单词,例如 and
或者 the
,它们对相关性没有多少影响),它们会被删除。 由于理解英语语法的规则,这个分词器可以提取英语单词的 词干 。
英语
分词器会产生下面的词条:
set, shape, semi, transpar, call, set_tran, 5
注意看 transparent`、 `calling
和 set_trans
已经变为词根格式。
什么时候使用分析器
当我们 索引 一个文档,它的全文域被分析成词条以用来创建倒排索引。 但是,当我们在全文域 搜索 的时候,我们需要将查询字符串通过 相同的分析过程 ,以保证我们搜索的词条格式与索引中的词条格式一致。
全文查询,理解每个域是如何定义的,因此它们可以做 正确的事:
- 当你查询一个 全文 域时, 会对查询字符串应用相同的分析器,以产生正确的搜索词条列表。
- 当你查询一个 精确值 域时,不会分析查询字符串, 而是搜索你指定的精确值。
现在你可以理解在 开始章节 的查询为什么返回那样的结果:
date
域包含一个精确值:单独的词条 `2014-09-15`。_all
域是一个全文域,所以分词进程将日期转化为三个词条: `2014`, `09`, 和 `15`。
当我们在 _all
域查询 2014`,它匹配所有的12条推文,因为它们都含有 `2014
:
GET /_search?q=2014 # 12 results
当我们在 _all
域查询 2014-09-15`,它首先分析查询字符串,产生匹配 `2014`, `09`, 或 `15
中 任意 词条的查询。这也会匹配所有12条推文,因为它们都含有 2014
:
GET /_search?q=2014-09-15 # 12 results !
当我们在 date
域查询 `2014-09-15`,它寻找 精确 日期,只找到一个推文:
GET /_search?q=date:2014-09-15 # 1 result
当我们在 date
域查询 `2014`,它找不到任何文档,因为没有文档含有这个精确日志:
GET /_search?q=date:2014 # 0 results !
测试分析器
有些时候很难理解分词的过程和实际被存储到索引中的词条,特别是你刚接触 Elasticsearch。为了理解发生了什么,你可以使用 analyze
API 来看文本是如何被分析的。在消息体里,指定分析器和要分析的文本:
GET /_analyze { "analyzer": "standard", "text": "Text to analyze" }
结果中每个元素代表一个单独的词条:
{ "tokens": [ { "token": "text", "start_offset": 0, "end_offset": 4, "type": "<ALPHANUM>", "position": 1 }, { "token": "to", "start_offset": 5, "end_offset": 7, "type": "<ALPHANUM>", "position": 2 }, { "token": "analyze", "start_offset": 8, "end_offset": 15, "type": "<ALPHANUM>", "position": 3 } ] }
token
是实际存储到索引中的词条。 position
指明词条在原始文本中出现的位置。 start_offset
和 end_offset
指明字符在原始字符串中的位置。
每个分析器的 type
值都不一样,可以忽略它们。它们在Elasticsearch中的唯一作用在于keep_types
token 过滤器。
analyze
API 是一个有用的工具,它有助于我们理解Elasticsearch索引内部发生了什么,随着深入,我们会进一步讨论它。
指定分析器
当Elasticsearch在你的文档中检测到一个新的字符串域 ,它会自动设置其为一个全文 字符串
域,使用 标准
分析器对它进行分析。
你不希望总是这样。可能你想使用一个不同的分析器,适用于你的数据使用的语言。有时候你想要一个字符串域就是一个字符串域–不使用分析,直接索引你传入的精确值,例如用户ID或者一个内部的状态域或标签。
要做到这一点,我们必须手动指定这些域的映射。
更多内容请访问网站: http://laijianfeng.org
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/14169.html