动态规划
官方解释:
动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域,并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了显著的效果。
动态规划是程序进阶路上必须要经过的一个山坡,所以记录在学习动态规划过程中的方法和思路。
动态规划系列文章一共分为九个部分,每一个部分都是一个独立的例子,难易程度逐渐递增。这九个例子分别是:
- 动态规划系列之一爬楼梯问题
- 动态规划系列之二最大和子数组
- 动态规划系列之三乘积最大子数组
- 动态规划系列之四梅花桩问题
- 动态规划系列之五打家劫舍
- 动态规划系列之六01背包问题
- 动态规划系列之七完全背包问题
- 动态规划系列之八多重背包问题
- 动态规划系列之九找零钱
爬楼梯问题
不管问题有多难,我们首先来个望闻问切。以下面这个爬楼梯问题作为开胃菜。请听题:
有一座高度是10级台阶的楼梯,从下往上走,每跨一步只能向上1级或者2级台阶。要求用程序来求出一共有多少种走法。比如,每次走1级台阶,一共走10步,这是其中一种走法。我们可以简写成 1,1,1,1,1,1,1,1,1,1。
那么先不看答案,你觉得这一个问题该如何解决呢?从下往上一步一步的走,for循环尝试所有的办法吗?每一步的走法都会影响后面的走法,所以计算的量非常庞大。那么使用动态规划的解题思路如何处理呢?
动态规划问题的解决方式有几个固定的套路,个人总结为:
- 建立数学模型
- 状态转移方程
- 确立边界值
第一步 建立数学模型
假设走到第10级台阶有f(10)
种方法,走到第9级台阶有f(9)
种方法。记住这里f(10)
就是走10级台阶走法的数量,这是动态规划的常见数学模型
第二步 状态转移方程
走到 10 级台阶时前面有两种可能,一种是从第8级台阶走上来,一次跨了2级台阶;或者从第9级台阶走上来,一次跨了1级台阶。所以说 走第10级台阶的总数 = 到第9级台阶的走法 + 到第8级台阶的走法
f(10) = f(9) + f(8)
同样道理,走到第9级台阶时肯定有两个可能,要么从第7级台阶过来,要么从第8级台阶过来。所有
f(9) = f(8) + f(7)
f(8) = f(7) + f(6)
f(7) = f(6) + f(5)
.....
总结状态转移方程就是:
f(n) = f(n-1) + f(n-2)
第三步 确立边界值
第1级台阶只有一种走法,就是1步跨上去,第2级台阶有两种走法,分别是每次跨一步,两次;一次跨两级台阶,一次;所以:
f(1) = 1
f(2) = 2
代码实现
有了以上的理论基础就可以写出代码来实现这个上楼梯问题。
def up(n):
if n == 1:
return 1
if n == 2:
return 2
total = up(n-1) + up(n-2)
return total
result = up(10)
print('台阶的走法为:%d' % result)
台阶的走法为:89
换一个思路
以上的思路是一种由上向下的解法思路,从最后一个值不断向前推导,直到遇到边界情况。可以换一个思路,从下往上看。走第一步台阶只有1种方法,走第二部台阶有2种方法,第三步台阶可以从第1步跨2级上来,也可以是从第2步跨1级上来。所以:
已知: 边界情况 f(1) = 1, f(2) = 2 ,并且知道f(3) = f(1) + f(2)
求解:f(10)
def up(n):
if n == 1:
return 1
if n == 2:
return 2
a = 1
b = 2
sum_num = 0
for i in range(3,n+1):
# 状态转移方程:f(n) = f(n-1) + f(n-2)
sum_num = a + b
a = b
b = sum_num
return sum_num
总结
那么到这里就已经完成了走楼梯的解法,从代码量来看,核心代码不超过10行,是不是没有想象的那么难呢?是的,动态规划并不是想象的那么难,只要能领会思路,了解解题套路就畅通无阻啦。
另外可以看到动态规划问题既可以使用迭代解法,也可以使用循环解法。从常见的解题思路来看,循环的方法比较多。那么如果你已经理解了动态规划的建立数学模型
+ 状态转移
+ 确立边界值
,说明本篇就完全掌握了。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/194256.html