我们知道dp也就是动态规划的思想就是先解决小问题,通过不断的解决小问题,最终解决大问题。那么能够应用树形dp套路的题目都应该符合一个条件,那就是通过解决每个子树的小问题,最终解决整棵树的大问题。
套路
- 分析有几种可能
- 需要哪些信息
- 汇总信息,构造
ReturnType
- 构造递归函数
找到二叉树中的最大搜索二叉子树
首先,这道题是可以通过先解决小的子树最大搜索二叉子树,然后不断扩大范围,最终解决整棵树的最大搜索二叉子树。
那么分析套路开始:
-
分析有哪些情况?
第一:最大搜索二叉子树在左子树中
第二:最大搜索二叉子树在右子树中
第三:整颗左子树+头结点+整颗右子树,是一个搜索二叉树
-
需要哪些信息?
maxBSTHead
最大搜索二叉子树的头结点,我们需要返回他maxBSTSize
最大搜索二叉子树的大小,我们需要跟其他搜索二叉树比较左子树的最大值,我们需要这个值跟头结点比较
右子树的最小值,我们需要这个值跟头结点比较
-
合并信息到
ReturnType
-
构造递归函数
首先返回值是
ReturnType
,参数为Node
,不多说。终止条件仍然要返回一个ReturnType
。对于这种套路都是先左右递归,然后根据各种情况为ReturnType
的属性赋值。
/**
* 找到二叉树中的最大搜索二叉子树
*
* @author keboom
* @date 2021/5/9
*/
public class FindLargestTree {
class ReturnType {
public Node maxBSTHead;
public int maxBSTSize;
public int min;
public int max;
public ReturnType(Node maxBSTHead, int maxBSTSize, int min, int max) {
this.maxBSTHead = maxBSTHead;
this.maxBSTSize = maxBSTSize;
this.min = min;
this.max = max;
}
}
public ReturnType process(Node X) {
// base case:如果子树是空树
if (X == null) {
return new ReturnType(null, 0, Integer.MAX_VALUE, Integer.MIN_VALUE);
}
// 默认直接得到左树全部信息
ReturnType lData = process(X.left);
// 默认直接得到右树全部信息
ReturnType rData = process(X.right);
// 信息整合
// 求最小值:X,左子树,右子树
int min = Math.min(X.value, Math.min(lData.min, rData.min));
// 求最大值:X,左子树,右子树
int max = Math.max(X.value, Math.max(lData.max, rData.max));
// 如果只考虑可能性一和二,也就是最大搜索二叉树是X的左子树或者右子树
int maxBSTSize = Math.max(lData.maxBSTSize, rData.maxBSTSize);
// 如果只考虑可能性一和二,也就是最大搜索二叉树是X的左子树或者右子树
Node maxBSTHead = lData.maxBSTSize >= rData.maxBSTSize ? lData.maxBSTHead : rData.maxBSTHead;
// 利用收集的信息,可以判断是否存在第三种可能
if (lData.maxBSTHead == X.left && rData.maxBSTHead == X.right
&& X.value > lData.max && X.value < rData.min) {
maxBSTSize = lData.maxBSTSize + rData.maxBSTSize + 1;
maxBSTHead = X;
}
return new ReturnType(maxBSTHead, maxBSTSize, min, max);
}
public Node getMaxBST(Node head) {
return process(head).maxBSTHead;
}
}
判断二叉树是否为平衡二叉树
-
有哪些情况?
就那一种情况,那就是左树,右树都是平衡二叉树,并且高度差小于等于1
-
需要哪些信息?
高度,该树是否为平衡
-
综合信息到
ReturnType
-
构造递归函数
返回值,参数,终止条件不多说了。同样的格式,先是左右递归,然后操作之。我们需要求
ReturnType
的属性值,对于树高来说,去左子树和右子树中大的+1即可。对于是否平衡,那么就要求左树和右树都平衡,且高度差小于等于1。
/**
* @author keboom
* @date 2021/5/17
*/
public class IsBalanceTree {
class ReturnType {
public boolean isBalanced;
public int height;
public ReturnType(boolean isBalanced, int height) {
this.isBalanced = isBalanced;
this.height = height;
}
}
public boolean isBalanced(Node head) {
return process(head).isBalanced;
}
private ReturnType process(Node head) {
if (head == null) {
return new ReturnType(true, 0);
}
ReturnType leftData = process(head.left);
ReturnType rightData = process(head.right);
int height = Math.max(leftData.height, rightData.height) + 1;
boolean isBalanced = leftData.isBalanced && rightData.isBalanced
&& Math.abs(leftData.height - rightData.height) < 2;
return new ReturnType(isBalanced, height);
}
}
求二叉树中两节点的最大距离
这题要求从一个二叉树中,我找两个距离最远的点,求最远距离是多少?
这棵树找4和6,距离就是最大的5。当然了找4和7,5和6,5和7都是一样的。
打马赛克的是没有了哦😉,比如这颗树,4和5那就是距离最大是为3。当然如果左子树更长一些就好了。
当然还有右子树长一点的。
-
有几种情况?
第一种树比较平衡,那么在左子树,右子树各取一点,那么可能是最大距离
第二种,左子树比较长,右子树比较短,那么从左子树中去两点,可能是最大距离
第三种,右子树长,左子树短,则从右子树取两点
-
需要哪些信息?
树高,用来计算两点的距离
最长距离,需要进行比较
-
放到
ReturnType
-
构造递归函数
只说
maxDistance
,那就是三种情况中取最大的。
public class ReturnType {
public int maxDistance;
public int height;
public ReturnType(int maxDistance, int height) {
this.maxDistance = maxDistance;
this.height = height;
}
}
public int getMaxDistance(Node head) {
return process(head).maxDistance;
}
private ReturnType process(Node head) {
if (head == null) {
return new ReturnType(0, 0);
}
ReturnType leftData = process(head.left);
ReturnType rightData = process(head.right);
int height = Math.max(leftData.height, rightData.height) + 1;
int maxDistance = Math.max(leftData.height + rightData.height + 1,
Math.max(leftData.maxDistance, rightData.maxDistance));
return new ReturnType(maxDistance, height);
}
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/195933.html