Flink实战-(4)Flink Kafka实时同步到Hbase

导读:本篇文章讲解 Flink实战-(4)Flink Kafka实时同步到Hbase,希望对大家有帮助,欢迎收藏,转发!站点地址:www.bmabk.com

1 Maven依赖

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>flink-kafka-hbase</artifactId>
    <version>1.0-SNAPSHOT</version>


    <properties>
        <flink.version>1.13.6</flink.version>
        <scala.binary.version>2.11</scala.binary.version>
    </properties>


    <dependencies>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>5.1.34</version>
        </dependency>
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.28</version>
            <scope>compile</scope>
        </dependency>
        <!--工具包依赖-->
        <dependency>
            <groupId>com.google.guava</groupId>
            <artifactId>guava</artifactId>
            <version>23.0</version>
        </dependency>
        <dependency>
            <groupId>com.google.code.gson</groupId>
            <artifactId>gson</artifactId>
            <version>2.8.5</version>
        </dependency>
        <dependency>
            <groupId>org.apache.httpcomponents</groupId>
            <artifactId>httpclient</artifactId>
            <version>4.5.2</version>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.18.4</version>
        </dependency>
        <dependency>
            <groupId>com.jayway.jsonpath</groupId>
            <artifactId>json-path</artifactId>
            <version>2.4.0</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>joda-time</groupId>
            <artifactId>joda-time</artifactId>
            <version>2.9.9</version>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
            <scope>test</scope>
        </dependency>
        <!--state backend-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-statebackend-rocksdb_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-runtime-web_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>com.alibaba.ververica</groupId>
            <artifactId>flink-connector-mysql-cdc</artifactId>
            <version>1.4.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-hbase_${scala.binary.version}</artifactId>
            <version>1.9.3</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>2.7.4</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-core</artifactId>
            <version>2.6.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-hadoop-compatibility_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-api</artifactId>
            <version>1.7.25</version>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <configuration>
                    <source>8</source>
                    <target>8</target>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>3.1.0</version>
                <configuration>
                    <createDependencyReducedPom>false</createDependencyReducedPom>
                </configuration>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>

                        <configuration>
                            <transformers>
                                <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                    <!--如果要打包的话,这里要换成对应的 main class-->
                                    <mainClass>com.cwf.kafka.hbasedemo.KafkaHBaseStreamWriteMain</mainClass>
                                </transformer>
                                <transformer
                                        implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
                                    <resource>reference.conf</resource>
                                </transformer>
                            </transformers>
                            <filters>
                                <filter>
                                    <artifact>*:*:*:*</artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SF</exclude>
                                        <exclude>META-INF/*.DSA</exclude>
                                        <exclude>META-INF/*.RSA</exclude>
                                    </excludes>
                                </filter>
                            </filters>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

</project>

2 Java代码

2.1 Kafka生产者

package com.cwf.kafka.hbasedemo;

import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.util.Properties;

/**
 * 往kafka中写数据,模拟生产者
 */
@Slf4j
public class KafkaUtilsProducer {
    public static final String broker_list = "10.252.92.4:9092";
    public static final String topic = "zhisheng";  //kafka topic 需要和 flink 程序用同一个 topic

    public static void writeToKafka() throws InterruptedException {
        Properties props = new Properties();
        props.put("bootstrap.servers", broker_list);
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        KafkaProducer producer = new KafkaProducer<String, String>(props);
        int i = 0;
        while (true) {
            Thread.sleep(100L);// 每隔100ms 发送一次
            ProducerRecord record = new ProducerRecord<String, String>(
                    topic, null, null, String.valueOf(System.currentTimeMillis()));
            producer.send(record);
            log.info("record:{}", record);
            if (i % 10 == 0) {
                producer.flush();
                log.info("flush");
            }
            i++;
        }
    }

    public static void main(String[] args) throws InterruptedException {
        writeToKafka();
    }
}
    

2.2 主类

package com.cwf.kafka.hbasedemo;

import lombok.extern.slf4j.Slf4j;
import org.apache.flink.api.common.io.OutputFormat;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.hadoop.hbase.HTableDescriptor;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.util.Bytes;

import java.io.IOException;
import java.util.Properties;

@Slf4j
public class KafkaHBaseStreamWriteMain {
    public static String TOPIC = "zhisheng";

    public static void main(String[] args) throws Exception {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.addSource(new FlinkKafkaConsumer<>(
                TOPIC,   //这个 kafka topic 需要和上面的工具类的 topic 一致
                new SimpleStringSchema(),
                getKafkaProps()))
                .writeUsingOutputFormat(new HBaseOutputFormat());

        env.execute("Flink HBase connector sink");
    }


    private static Properties getKafkaProps() {
        // 配置kafka
        Properties props = new Properties();
        props.put("bootstrap.servers", "10.252.92.4:9092");
        props.put("zookeeper.connect", "10.252.92.4:2181");
        props.put("group.id", "metric-group");
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("auto.offset.reset", "latest");
        return props;
    }

    private static class HBaseOutputFormat implements OutputFormat<String> {

        private org.apache.hadoop.conf.Configuration configuration;
        private Connection connection = null;
        private Table table = null;

        @Override
        public void configure(Configuration parameters) {
            // 配置Hbase
            configuration = HBaseConfiguration.create();
            configuration.set("hbase.zookeeper.quorum", "10.252.92.4:2181");
            configuration.set("hbase.zookeeper.property.clientPort", "2081");
            configuration.set("hbase.rpc.timeout", "30000");
            configuration.set("hbase.client.operation.timeout", "30000");
            configuration.set("hbase.client.scanner.timeout.period", "30000");
        }

        @Override
        public void open(int taskNumber, int numTasks) throws IOException {
            connection = ConnectionFactory.createConnection(configuration);
            TableName tableName = TableName.valueOf("zhisheng_stream");
            Admin admin = connection.getAdmin();
            if (!admin.tableExists(tableName)) { //检查是否有该表,如果没有,创建
                log.info("不存在表:{}", tableName);
                admin.createTable(
                        new HTableDescriptor(TableName.valueOf("zhisheng_stream"))
                                .addFamily(new HColumnDescriptor("info_stream")));
            }
            table = connection.getTable(tableName);
        }

        @Override
        public void writeRecord(String record) throws IOException {
            log.info("rowkey->{},column->info_stream:{},value->{}", record.substring(6, 10), record, "cwf_" + record);
            Put put = new Put(Bytes.toBytes(record.substring(6, 10)));
            put.addColumn(Bytes.toBytes("info_stream"), Bytes.toBytes(record), Bytes.toBytes("cwf_" + record));
            table.put(put);
        }

        @Override
        public void close() throws IOException {
            table.close();
            connection.close();
        }
    }
}

3、本地运行

控制台

Flink实战-(4)Flink Kafka实时同步到Hbase

 Hbase控制台Flink实战-(4)Flink Kafka实时同步到Hbase

 这样就说明在本地运行成功了 完成了 生产者->Kafka->消费者(Flink)->数据仓库(Hbase)

4、打包发布

Flink实战-(4)Flink Kafka实时同步到Hbase

Flink实战-(4)Flink Kafka实时同步到Hbase 

在Hbase查找Rowkey=2162

Flink实战-(4)Flink Kafka实时同步到Hbase​​​​​​​

成功

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/71343.html

(0)
小半的头像小半

相关推荐

极客之音——专业性很强的中文编程技术网站,欢迎收藏到浏览器,订阅我们!