使用MongoDB关联查询

导读:本篇文章讲解 使用MongoDB关联查询,希望对大家有帮助,欢迎收藏,转发!站点地址:www.bmabk.com

使用MongoDB关联查询

在工作中,我们有时会使用MongoDB来存储一些复杂数据(有层级关系),一般情况下我们是直接单集和(表)进行CRUD,特殊情况下我们也需要进行关联查询。
下面,我们首先介绍在Mongo Shell 中进行关联查询,然后再使用Java代码利用MongoTemplate 框架进行关联查询:

  1. Mongo Shell(Mongo命令行)
  2. MongoTemplate(spring-data-mongodb框架)

注意:MongoDB虽然支持关联查询,但版本需要至少3.2及以上,且关联查询不如关系型数据库那样多表关联查询简单。

Mongo shell 关联查询

官网介绍$lookup

$lookup 简单教程

我们需要先简单了解下 $lookup,下图是官网给的定义:
在这里插入图片描述
$lookup 语法:

{
   $lookup:
     {
       from: <collection to join>,
       localField: <field from the input documents>,
       foreignField: <field from the documents of the "from" collection>,
       as: <output array field>
     }
}
ffield 作用
from Specifies the collection in the same database to perform the join with. The from collection cannot be sharded. For details, see Sharded Collection Restrictions.

指定同一数据库中用于执行联接的集合。从集合中不能分片。有关详细信息,请参阅分片收集限制。

localFieldSpecifies the field from the documents input to the $lookup stage. $lookup performs an equality match on the localField to the foreignField from the documents of the from collection. If an input document does not contain the localField, the $lookup treats the field as having a value of null for matching purposes.

指定从文档输入到

查找工作台的字段。

查找从 from 集合的文档中对 localField 与 foreignField 执行相等匹配。如果输入文档不包含 localField,则 $lookup 将该字段视为具有 null 值,以便进行匹配。

foreignFieldSpecifies the field from the documents in the from collection. $lookup performs an equality match on the foreignField to the localField from the input documents. If a document in the from collection does not contain the foreignField, the $lookup treats the value as null for matching purposes.

指定 from 集合中文档的字段。$lookup在 foreignField 上执行与输入文档中的 localField 相等的匹配。如果 from 集合中的文档不包含 foreignField,则为了进行匹配,$查找将该值视为 null。

asSpecifies the name of the new array field to add to the input documents. The new array field contains the matching documents from the from collection. If the specified name already exists in the input document, the existing field is overwritten.

指定要添加到输入文档中的新数组字段的名称。新的数组字段包含来自 from 集合的匹配文档。如果输入文档中已经存在指定的名称,则会覆盖现有字段。

该操作将对应于以下伪 sql 语句:

SELECT *, <output array field>
FROM collection
WHERE <output array field> IN (SELECT *
                               FROM <collection to join>
                               WHERE <foreignField>= <collection.localField>);

$lookup 示例

以下内用均出自MongoDB官方文档

使用$lookup执行单个相等连接

  1. 使用以下文档创建一个收集订单(orders):
db.orders.insert([
   { "_id" : 1, "item" : "almonds", "price" : 12, "quantity" : 2 },
   { "_id" : 2, "item" : "pecans", "price" : 20, "quantity" : 1 },
   { "_id" : 3  }
])
  1. 使用以下文档创建另一个库存集合(inventory):
db.inventory.insert([
   { "_id" : 1, "sku" : "almonds", "description": "product 1", "instock" : 120 },
   { "_id" : 2, "sku" : "bread", "description": "product 2", "instock" : 80 },
   { "_id" : 3, "sku" : "cashews", "description": "product 3", "instock" : 60 },
   { "_id" : 4, "sku" : "pecans", "description": "product 4", "instock" : 70 },
   { "_id" : 5, "sku": null, "description": "Incomplete" },
   { "_id" : 6 }
])
  1. 以下订单集合(orders)上的聚合操作使用来自订单集合(orders)的item字段和来自库存集合(inventory)的sku字段将来自订单集合的文档与来自库存集合的文档连接起来:
db.orders.aggregate([
   {
     $lookup:
       {
         from: "inventory",
         localField: "item",
         foreignField: "sku",
         as: "inventory_docs"
       }
  }
])
  1. 该操作返回以下文档:
{
   "_id" : 1,
   "item" : "almonds",
   "price" : 12,
   "quantity" : 2,
   "inventory_docs" : [
      { "_id" : 1, "sku" : "almonds", "description" : "product 1", "instock" : 120 }
   ]
}
{
   "_id" : 2,
   "item" : "pecans",
   "price" : 20,
   "quantity" : 1,
   "inventory_docs" : [
      { "_id" : 4, "sku" : "pecans", "description" : "product 4", "instock" : 70 }
   ]
}
{
   "_id" : 3,
   "inventory_docs" : [
      { "_id" : 5, "sku" : null, "description" : "Incomplete" },
      { "_id" : 6 }
   ]
}
  1. 该操作将对应于下面的伪sql语句
SELECT *, inventory_docs
FROM orders
WHERE inventory_docs IN (SELECT *
FROM inventory
WHERE sku= orders.item);

使用$lookup与一个数组

启动MongoDB 3.4,如果localField是一个数组,你可以匹配一个标量foreignField的数组元素,而不需要$unwind阶段。

  1. 例如,使用以下文档创建一个示例集合(classes):
db.classes.insert( [
   { _id: 1, title: "Reading is ...", enrollmentlist: [ "giraffe2", "pandabear", "artie" ], days: ["M", "W", "F"] },
   { _id: 2, title: "But Writing ...", enrollmentlist: [ "giraffe1", "artie" ], days: ["T", "F"] }
])
  1. 使用以下文档创建另一个集合(members):
db.members.insert( [
   { _id: 1, name: "artie", joined: new Date("2016-05-01"), status: "A" },
   { _id: 2, name: "giraffe", joined: new Date("2017-05-01"), status: "D" },
   { _id: 3, name: "giraffe1", joined: new Date("2017-10-01"), status: "A" },
   { _id: 4, name: "panda", joined: new Date("2018-10-11"), status: "A" },
   { _id: 5, name: "pandabear", joined: new Date("2018-12-01"), status: "A" },
   { _id: 6, name: "giraffe2", joined: new Date("2018-12-01"), status: "D" }
])
  1. 下面的聚合操作将classes集合中的文档与members集合连接起来,classes集和的enrollee_info字段与members的字段name之间进行匹配:
db.classes.aggregate([
   {
      $lookup:
         {
            from: "members",
            localField: "enrollmentlist",
            foreignField: "name",
            as: "enrollee_info"
        }
   }
])
  1. 该操作返回以下结果:
{
   "_id" : 1,
   "title" : "Reading is ...",
   "enrollmentlist" : [ "giraffe2", "pandabear", "artie" ],
   "days" : [ "M", "W", "F" ],
   "enrollee_info" : [
      { "_id" : 1, "name" : "artie", "joined" : ISODate("2016-05-01T00:00:00Z"), "status" : "A" },
      { "_id" : 5, "name" : "pandabear", "joined" : ISODate("2018-12-01T00:00:00Z"), "status" : "A" },
      { "_id" : 6, "name" : "giraffe2", "joined" : ISODate("2018-12-01T00:00:00Z"), "status" : "D" }
   ]
}
{
   "_id" : 2,
   "title" : "But Writing ...",
   "enrollmentlist" : [ "giraffe1", "artie" ],
   "days" : [ "T", "F" ],
   "enrollee_info" : [
      { "_id" : 1, "name" : "artie", "joined" : ISODate("2016-05-01T00:00:00Z"), "status" : "A" },
      { "_id" : 3, "name" : "giraffe1", "joined" : ISODate("2017-10-01T00:00:00Z"), "status" : "A" }
   ]
}

使用$lookup与$mergeObjects

在3.6版更改:MongoDB 3.6添加了$mergeObjects操作符来将多个文档合并为一个文档

  1. 使用以下文档重新创建订单集和(orders):
db.orders.insert([
   { "_id" : 1, "item" : "almonds", "price" : 12, "quantity" : 2 },
   { "_id" : 2, "item" : "pecans", "price" : 20, "quantity" : 1 }
])
  1. 使用以下文档创建另一个集合(items):
db.items.insert([
  { "_id" : 1, "item" : "almonds", description: "almond clusters", "instock" : 120 },
  { "_id" : 2, "item" : "bread", description: "raisin and nut bread", "instock" : 80 },
  { "_id" : 3, "item" : "pecans", description: "candied pecans", "instock" : 60 }
])
  1. 下面的操作首先使用$lookup阶段通过item字段来连接两个集合,然后使用$replaceRoot中的$mergeObjects来合并item和orders中的已连接文档:
db.orders.aggregate([
   {
      $lookup: {
         from: "items",
         localField: "item",    // field in the orders collection
         foreignField: "item",  // field in the items collection
         as: "fromItems"
      }
   },
   {
      $replaceRoot: { newRoot: { $mergeObjects: [ { $arrayElemAt: [ "$fromItems", 0 ] }, "$$ROOT" ] } }
   },
   { $project: { fromItems: 0 } }
])

该操作返回以下文档:

{ "_id" : 1, "item" : "almonds", "description" : "almond clusters", "instock" : 120, "price" : 12, "quantity" : 2 }
{ "_id" : 2, "item" : "pecans", "description" : "candied pecans", "instock" : 60, "price" : 20, "quantity" : 1 }

使用$lookup指定多个连接条件

在3.6版更改:MongoDB 3.6增加了对已连接集合执行管道的支持,这允许指定多个连接条件以及不相关的子查询。

  1. 使用以下文档创建一个订单集和(orders):
db.orders.insert([
  { "_id" : 1, "item" : "almonds", "price" : 12, "ordered" : 2 },
  { "_id" : 2, "item" : "pecans", "price" : 20, "ordered" : 1 },
  { "_id" : 3, "item" : "cookies", "price" : 10, "ordered" : 60 }
])
  1. 使用以下文档创建另一个仓库集合(warehouses):
db.warehouses.insert([
  { "_id" : 1, "stock_item" : "almonds", warehouse: "A", "instock" : 120 },
  { "_id" : 2, "stock_item" : "pecans", warehouse: "A", "instock" : 80 },
  { "_id" : 3, "stock_item" : "almonds", warehouse: "B", "instock" : 60 },
  { "_id" : 4, "stock_item" : "cookies", warehouse: "B", "instock" : 40 },
  { "_id" : 5, "stock_item" : "cookies", warehouse: "A", "instock" : 80 }
])
  1. 以下操作将订单集合与仓库集合结合起来,根据项目以及库存数量是否足以涵盖订购数量:
db.orders.aggregate([
   {
      $lookup:
         {
           from: "warehouses",
           let: { order_item: "$item", order_qty: "$ordered" },
           pipeline: [
              { $match:
                 { $expr:
                    { $and:
                       [
                         { $eq: [ "$stock_item",  "$$order_item" ] },
                         { $gte: [ "$instock", "$$order_qty" ] }
                       ]
                    }
                 }
              },
              { $project: { stock_item: 0, _id: 0 } }
           ],
           as: "stockdata"
         }
    }
])
  1. 该操作返回以下文档:
{ "_id" : 1, "item" : "almonds", "price" : 12, "ordered" : 2,
   "stockdata" : [ { "warehouse" : "A", "instock" : 120 },
   { "warehouse" : "B", "instock" : 60 } ] }
{ "_id" : 2, "item" : "pecans", "price" : 20, "ordered" : 1,
   "stockdata" : [ { "warehouse" : "A", "instock" : 80 } ] }
{ "_id" : 3, "item" : "cookies", "price" : 10, "ordered" : 60,
   "stockdata" : [ { "warehouse" : "A", "instock" : 80 } ] }
  1. 该操作对应于以下伪sql语句:
SELECT *, stockdata
FROM orders
WHERE stockdata IN ( SELECT warehouse, instock
                     FROM warehouses
                     WHERE stock_item = orders.item
                     AND instock >= orders.ordered );

The $expr operator only uses indexes on the from collection for equality matches. For example, if the index { stock_item: 1, instock: 1 } exists on the warehouses collection:
The equality match on the warehouses.stock_item field uses the index.
The range part of the query on the warehouses.instock field does not use the indexed field in the compound index.

不相关子查询

在3.6版更改:MongoDB 3.6增加了对已连接集合执行管道的支持,这允许指定多个连接条件以及不相关的子查询。

  1. 根据以下文档创建一个集合(absences):
db.absences.insert([
   { "_id" : 1, "student" : "Ann Aardvark", sickdays: [ new Date ("2018-05-01"),new Date ("2018-08-23") ] },
   { "_id" : 2, "student" : "Zoe Zebra", sickdays: [ new Date ("2018-02-01"),new Date ("2018-05-23") ] },
])
  1. 使用以下文档创建另一个集合(holidays):
db.holidays.insert([
   { "_id" : 1, year: 2018, name: "New Years", date: new Date("2018-01-01") },
   { "_id" : 2, year: 2018, name: "Pi Day", date: new Date("2018-03-14") },
   { "_id" : 3, year: 2018, name: "Ice Cream Day", date: new Date("2018-07-15") },
   { "_id" : 4, year: 2017, name: "New Years", date: new Date("2017-01-01") },
   { "_id" : 5, year: 2017, name: "Ice Cream Day", date: new Date("2017-07-16") }
])
  1. 以下操作将 absences集和与holidays集和中的2018年假期信息加入到absences集和中:
db.absences.aggregate([
   {
      $lookup:
         {
           from: "holidays",
           pipeline: [
              { $match: { year: 2018 } },
              { $project: { _id: 0, date: { name: "$name", date: "$date" } } },
              { $replaceRoot: { newRoot: "$date" } }
           ],
           as: "holidays"
         }
    }
])

该操作返回以下结果:

{ "_id" : 1, "student" : "Ann Aardvark", "sickdays" : [ ISODate("2018-05-01T00:00:00Z"), ISODate("2018-08-23T00:00:00Z") ],
    "holidays" : [ { "name" : "New Years", "date" : ISODate("2018-01-01T00:00:00Z") }, { "name" : "Pi Day", "date" : ISODate("2018-03-14T00:00:00Z") }, { "name" : "Ice Cream Day", "date" : ISODate("2018-07-15T00:00:00Z") } ] }
{ "_id" : 2, "student" : "Zoe Zebra", "sickdays" : [ ISODate("2018-02-01T00:00:00Z"), ISODate("2018-05-23T00:00:00Z") ],
    "holidays" : [ { "name" : "New Years", "date" : ISODate("2018-01-01T00:00:00Z") }, { "name" : "Pi Day", "date" : ISODate("2018-03-14T00:00:00Z") }, { "name" : "Ice Cream Day", "date" : ISODate("2018-07-15T00:00:00Z") } ] }

该操作将对应于以下伪sql语句:

SELECT *, holidays
FROM absences
WHERE holidays IN (SELECT name, date
                    FROM holidays
                    WHERE year = 2018);

MongoTemplate 关联查询

需要引入 spring-boot-starter-data-mongodb

下面是Java代码

LookupOperation lookupOperation = LookupOperation.newLookup()
                .from(ExamMongoCollectionConstant.TOPIC)    // 被关联的表 topic
                .localField(ExamMongoColumnConstant.ID) // 自己的字段
                .foreignField(ExamMongoColumnConstant.TOPIC_FATHER_ID)  // 被关联的表 topic 中的字段
                .as("result"); // 关联查询后的结果
        Criteria criteria = Criteria.where(ExamMongoColumnConstant.RELATION_ID).is(relationId); // 条件查询
        
        Aggregation aggregation = Aggregation.newAggregation(
         		// 条件查询过滤
                Aggregation.match(criteria),
                // 关联查询
                lookupOperation
        );
		/*
		其中 TopicJoinTopicFather2DoTopicDTO 是定义的一个结果返回类,需要跟上面result返回的格式一样
		ExamMongoCollectionConstant.TOPIC_FATHER 表示关联查询的表,
		TopicJoinTopicFather2DoTopicDTO.class:返回的数据使用该类接收
		*/
		// 执行上面的关联查询,并将结果返回成 List<TopicJoinTopicFather2DoTopicDTO> 格式
        List<TopicJoinTopicFather2DoTopicDTO> list =
                this.mongoTemplate.aggregate(aggregation, ExamMongoCollectionConstant.TOPIC_FATHER, TopicJoinTopicFather2DoTopicDTO.class).getMappedResults();

上面代码中的 TopicJoinTopicFather2DoTopicDTO 类其样子如下:

注意的是字段上面要加上MongoDB的注解,标明要与哪个字段进行一一对应即可

@Data
public class TopicJoinTopicFather2DoTopicDTO extends Topic {
    /**
     * 主键标识,该属性的值会自动对应mongodb的主键字段"_id",如果该属性名就叫“id”,则该注解可以省略,否则必须写
     */
    @Id
    private String id;

    /**
     * 题干对象
     */
    @Field("question_detail")
    private TopicDetailDO questionDetail;

    /**
     * 题型样式
     */
    @Field("question_type")
    private String questionType;

    /**
     * 大题的题型名称
     */
    @Field("question_type_name")
    private String questionTypeName;

    /**
     * 课节或试卷uuid
     */
    @Field("relation_id")
    private String relationId;

    @Field("result")
    private List<DoTopicDTO> doTopicDTOS;
}

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/78265.html

(0)
小半的头像小半

相关推荐

极客之音——专业性很强的中文编程技术网站,欢迎收藏到浏览器,订阅我们!