Java Metrics系统性能监控工具

导读:本篇文章讲解 Java Metrics系统性能监控工具,希望对大家有帮助,欢迎收藏,转发!站点地址:www.bmabk.com

前言

Metrics是一个Java库,可以对系统进行监控,统计一些系统的性能指标。
比如一个系统后台服务,我们可能需要了解一下下面的一些情况:
1、每秒钟的请求数是多少(TPS)?
2、平均每个请求处理的时间?
3、请求处理的最长耗时?
4、等待处理的请求队列长度?
5、又或者一个缓存服务:缓存的命中率?平均查询缓存的时间?

基本上每一个服务、应用都需要做一个监控系统,这需要尽量以少量的代码,实现统计某类数据的功能。


Metric Registries :

MetricRegistry类是Metrics的核心,它是存放应用中所有metrics的容器,也是我们使用 Metrics 库的起点。

MetricRegistry registry = new MetricRegistry();

Metrics 数据展示 :

Metrics 提供了 Report 接口,用于展示 metrics 获取到的统计数据。metrics-core中主要实现了四种 reporter: JMX ,console, SLF4J, 和 CSV。 在的例子中,我们使用 ConsoleReporter 。

Metrics的五种类型 :

Gauges

比较简单的度量指标,只有一个简单的返回值,例如,我们想衡量一个待处理队列中任务的个数,代码如下:

package com.zyh.maven.metricsdemo;

import com.codahale.metrics.ConsoleReporter;
import com.codahale.metrics.Gauge;
import com.codahale.metrics.MetricRegistry;

import java.util.LinkedList;
import java.util.Queue;
import java.util.concurrent.TimeUnit;

public class GaugeTest {

    public static Queue<String> q = new LinkedList<String>();

    public static void main(String[] args) throws InterruptedException {

        MetricRegistry metricRegistry = new MetricRegistry();
        ConsoleReporter reporter = ConsoleReporter.forRegistry(metricRegistry).build();
        reporter.start(1, TimeUnit.SECONDS);

        metricRegistry.register(MetricRegistry.name(GaugeTest.class, "queue", "size"),
                new Gauge<Integer>(){
                    @Override
                    public Integer getValue() {
                        return q.size();
                    }
                });

        while (true)
        {
            Thread.sleep(1000);
            q.add("lfwhvip");
        }
    }
}

运行结果 :

22-11-3 14:36:28 ================================================================

-- Gauges ----------------------------------------------------------------------
com.zyh.maven.metricsdemo.GaugeTest.queue.size
             value = 1


22-11-3 14:36:29 ================================================================

-- Gauges ----------------------------------------------------------------------
com.zyh.maven.metricsdemo.GaugeTest.queue.size
             value = 1

Counters

Counter 就是计数器,Counter 只是用 Gauge 封装了 AtomicLong ,我们可以使用如下的方法获得队列大小,代码如下:

package com.zyh.maven.metricsdemo;

import com.codahale.metrics.ConsoleReporter;
import com.codahale.metrics.Counter;
import com.codahale.metrics.MetricRegistry;

import java.util.Queue;
import java.util.Random;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.TimeUnit;

public class CounterTest {

    public static Queue<String> q = new LinkedBlockingDeque<String>();

    public static Counter pendingJobs;

    public static Random random = new Random();

    public static void addJob(String job)
    {
        pendingJobs.inc();
        q.offer(job);
    }

    public static String takeJob()
    {
        pendingJobs.dec();
        return q.poll();
    }

    public static void main(String[] args) throws InterruptedException {

        MetricRegistry registry = new MetricRegistry();
        ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build();
        reporter.start(1, TimeUnit.SECONDS);

        pendingJobs = registry.counter(MetricRegistry.name(Queue.class, "pending-jobs", "size"));

        int num = 1;
        while(true)
        {
            Thread.sleep(200);
            if(random.nextDouble() > 0.7)
            {
                String job = takeJob();
                System.out.println("take job :" + job);
            }else{
                String job = "Job-" + num;
                addJob(job);
                System.out.println("add Job :" + job);
            }
            num++;
        }
    }
}

运行结果

take job :Job-14
add Job :Job-26
add Job :Job-27
add Job :Job-28
add Job :Job-29
22-11-3 14:39:58 ================================================================

-- Counters --------------------------------------------------------------------
java.util.Queue.pending-jobs.size
             count = 11


take job :Job-16
add Job :Job-31
add Job :Job-32
take job :Job-17
take job :Job-18
22-11-3 14:39:59 ================================================================

-- Counters --------------------------------------------------------------------
java.util.Queue.pending-jobs.size
             count = 10

Meters

Meter度量一系列事件发生的速率(rate),例如TPS。Meters会统计最近1分钟,5分钟,15分钟,还有全部时间的速率。

package com.zyh.maven.metricsdemo;

import com.codahale.metrics.ConsoleReporter;
import com.codahale.metrics.Meter;
import com.codahale.metrics.MetricRegistry;

import java.util.Random;
import java.util.concurrent.TimeUnit;

public class MeterTest {

    public static Random random = new Random();

    public static void request(Meter meter)
    {
        System.out.println("request");
        meter.mark();
    }

    public static void request(Meter meter, int n)
    {
        while(n > 0)
        {
            request(meter);
            n--;
        }
    }
    public static void main(String[] args) throws InterruptedException {

        MetricRegistry registry = new MetricRegistry();
        ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build();
        reporter.start(1, TimeUnit.SECONDS);

        Meter meterTps = registry.meter(MetricRegistry.name(MeterTest.class, "request", "tps"));

        while(true)
        {
            request(meterTps, random.nextInt(5));
            Thread.sleep(1000);
        }
    }
}

运行结果

22-11-7 16:18:38 ===============================================================

-- Meters ----------------------------------------------------------------------
com.example.jkytest.modules.MeterTest.request.tps
             count = 8
         mean rate = 1.60 events/second
     1-minute rate = 1.60 events/second
     5-minute rate = 1.60 events/second
    15-minute rate = 1.60 events/second


request
request
request
request
22-11-7 16:18:39 ===============================================================

-- Meters ----------------------------------------------------------------------
com.example.jkytest.modules.MeterTest.request.tps
             count = 12
         mean rate = 2.00 events/second
     1-minute rate = 1.60 events/second
     5-minute rate = 1.60 events/second
    15-minute rate = 1.60 events/second

Histograms

Histogram统计数据的分布情况。比如最小值,最大值,中间值,还有中位数,75百分位,90百分位,95百分位,98百分位,99百分位,和 99.9百分位的值(percentiles)。

package com.example.jkytest.modules;

import com.codahale.metrics.ConsoleReporter;
import com.codahale.metrics.ExponentiallyDecayingReservoir;
import com.codahale.metrics.Histogram;
import com.codahale.metrics.MetricRegistry;

import java.util.Random;
import java.util.concurrent.TimeUnit;

public class HistogramsTest {
    public static Random random = new Random();

    public static void main(String[] args) throws InterruptedException {

        MetricRegistry registry = new MetricRegistry();
        ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build();
        reporter.start(1, TimeUnit.SECONDS);

        Histogram histogram = new Histogram(new ExponentiallyDecayingReservoir());
        registry.register(MetricRegistry.name(HistogramsTest.class, "request", "histogram"), histogram);

        while (true)
        {
            Thread.sleep(1000);
            histogram.update(random.nextInt(100000));
        }
    }
}

运行结果

-- Histograms ------------------------------------------------------------------
com.example.jkytest.modules.HistogramsTest.request.histogram
             count = 1
               min = 33246
               max = 33246
              mean = 33246.00
            stddev = 0.00
            median = 33246.00
              75% <= 33246.00
              95% <= 33246.00
              98% <= 33246.00
              99% <= 33246.00
            99.9% <= 33246.00


22-11-7 16:26:34 ===============================================================

-- Histograms ------------------------------------------------------------------
com.example.jkytest.modules.HistogramsTest.request.histogram
             count = 2
               min = 33246
               max = 68864
              mean = 51188.56
            stddev = 17808.50
            median = 68864.00
              75% <= 68864.00
              95% <= 68864.00
              98% <= 68864.00
              99% <= 68864.00
            99.9% <= 68864.00

Timers

Timer其实是 Histogram 和 Meter 的结合, histogram 某部分代码/调用的耗时, meter统计TPS。

package com.example.jkytest.modules;

import com.codahale.metrics.ConsoleReporter;
import com.codahale.metrics.MetricRegistry;
import com.codahale.metrics.Timer;

import java.util.Random;
import java.util.concurrent.TimeUnit;

public class TimerTest {

    public static Random random = new Random();

    public static void main(String[] args) throws InterruptedException {

        MetricRegistry registry = new MetricRegistry();
        ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build();
        reporter.start(1, TimeUnit.SECONDS);

        Timer timer = registry.timer(MetricRegistry.name(TimerTest.class, "get-latency"));

        Timer.Context ctx;

        while (true)
        {
            ctx = timer.time();
            Thread.sleep(random.nextInt(1000));
            ctx.stop();
        }
    }
}

运行结果

-- Timers ----------------------------------------------------------------------
com.example.jkytest.modules.TimerTest.get-latency
             count = 1
         mean rate = 1.00 calls/second
     1-minute rate = 0.00 calls/second
     5-minute rate = 0.00 calls/second
    15-minute rate = 0.00 calls/second
               min = 560.21 milliseconds
               max = 560.21 milliseconds
              mean = 560.21 milliseconds
            stddev = 0.00 milliseconds
            median = 560.21 milliseconds
              75% <= 560.21 milliseconds
              95% <= 560.21 milliseconds
              98% <= 560.21 milliseconds
              99% <= 560.21 milliseconds
            99.9% <= 560.21 milliseconds

总结

如果此篇文章有帮助到您, 希望打大佬们能关注点赞收藏评论支持一波,非常感谢大家!
如果有不对的地方请指正!!!

参考1
参考2
参考3

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/88154.html

(0)
小半的头像小半

相关推荐

极客之音——专业性很强的中文编程技术网站,欢迎收藏到浏览器,订阅我们!