树(Tree)和二叉树

导读:本篇文章讲解 树(Tree)和二叉树,希望对大家有帮助,欢迎收藏,转发!站点地址:www.bmabk.com

目录

1.树的定义

2.一些树的关键词定义

3.树的存储结构

4.二叉树的定义

5.满二叉树和完全二叉树

6.二叉树的性质

7.二叉树的存储方式

8.二叉树的基本操作

8.1 二叉树的4种遍历方式

8.2 二叉树的基本操作


1.树的定义

树是一种非线性的数据结构,它表现的关系是一对多

它是由n(n>=0)个结点组成的有限集,当n = 0时,称为空树。

在任意一棵非空树中应满足:

1.有且仅有一个特殊的根节点,根节点没有前驱结点

2.每一个非根结点有且只有一个父结点;

   除了根结点外,每个子结点可以分为多个不相交的子树,并且子树是不相交的

3.树是递归定义的

4.一颗N个结点的树有N-1条边

树(Tree)和二叉树


2.一些树的关键词定义

结点的度:一个结点含有子树的个数称为该结点的度
树的度:一棵树中,所有结点度的最大值称为树的度
树的深度:一棵树中节点的最大深度就是树的深度,也称为高度

父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点
子节点:一个节点含有的子树的根节点称为该节点的子节点
节点的层次:从根节点开始,根节点为第一层,根的子节点为第二层,以此类推
兄弟节点:拥有共同父节点的节点互称为兄弟节点
叶子节点:度为零的节点就是叶子节点
祖先:从根到该结点所经分支上的所有结点;
子孙:以某结点为根的子树中任一结点都称为该结点的子孙。
森林:m颗互不相交的树构成的集合就是森林


3.树的存储结构

(1)双亲表示法(2)孩子表示法(3)孩子兄弟表示法

(1)双亲表示法

在每个节点中,有一个指示器指示其双亲结点到链表中的位置,

使其每个结点,不但知道自己是谁,而且知道双亲位置

树(Tree)和二叉树

(2)孩子表示法

将每个结点的孩子结点排序,以单链表存储,则n个结点有n个孩子链表

并且如果是叶子结点,这个单链表为空

然后将每个单链表的头指针组成一个线性表,顺序存储放入数组中

树(Tree)和二叉树

(3)孩子兄弟表示法

任意一棵树, 它的结点的第一个孩子如果存在就是唯一的,它的右兄弟如果存在也是唯一的。 因此,我们设置两个指针,分别指向该结点的第一个孩子和此结点的右兄弟。

这样也就把这个树变成了二叉树

树(Tree)和二叉树


4.二叉树的定义

二叉树是结点的一个有限集合,该集合为空,或者是由一个根节点加上两棵称为左子树和右子树的二叉树组成。

需要注意的是

(1)每个结点最多有两棵子树,即二叉树不存在度大于2的结点。
(2)二叉树是有序树有左右之分,其子树的次序不能颠倒。

树(Tree)和二叉树


5.满二叉树和完全二叉树

(1)满二叉树

如果二叉树中除了叶子结点,每个结点的度都为 2,则此二叉树称为满二叉树。

树(Tree)和二叉树

特点

  1. 满二叉树中第 i 层的节点数为 2n-1 个。
  2. 深度为 k 的满二叉树必有 2k-1 个节点 ,叶子数为 2k-1。
  3. 满二叉树中不存在度为 1 的节点,每一个分支点中都两棵深度相同的子树,且叶子节点都在最底层。
  4. 具有 n 个节点的满二叉树的深度为 log2(n+1)。

 (2)完全二叉树

如果二叉树中除去最后一层节点为满二叉树,且最后一层的结点依次从左到右分布,则此二叉树被称为完全二叉树。

满二叉树是一种特殊的完全二叉树

n 个结点的完全二叉树的深度为 ⌊log2n⌋+1。

树(Tree)和二叉树

 


6.二叉树的性质

(1)在二叉树的第i层上至多有2^(i-1)个结点(i>=1)

树(Tree)和二叉树

 (2)深度为k的二叉树至多有2^k-1个结点(k>=1)

可以看上面的图,深度为4,一共有2^4 -1= 15个结点

(3)对于任何一颗二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1

树(Tree)和二叉树

(4)具有n个节点的完全二叉树深为log2x+1(其中x表示不大于n的最大整数)

树(Tree)和二叉树

(5)如果对一颗有n个结点的完全二叉树(其深度为[log2n]+1)的结点按层序编号(从       层到[log2n]+1层,每层从左到右),对任一结点i(1<=i<=n):
         如果i=1,则结点i是二叉树的根,无双亲,如果i>1,则其双亲结点是结点[i/2]
         如果2i>n,则结点i无左孩子(结点i为叶子结点)否则左孩子是结点2i。
        如果2i+1>n,则结点i无右孩子,否则其右孩子是结点2i+1.

 

下面看几个练习题

1.在具有 2n 个结点的完全二叉树中,叶子结点个数为( A )

A n
B n+1
C n-1
D n/2
一共有2n个结点 也就是偶数个结点,那么一定存在一个度为1的结点
所以就有    2n = n0+n2+1     n0 = n2+1
所以就有   2n = n0+n0-1+1 —>n = n0
2. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( B )
A 不存在这样的二叉树
B 200
C 198
D 199
     n2 = 199    n0=n2+1=200
3.一棵完全二叉树的节点数为531个,那么这棵树的高度为( B )
A 11
B 10
C 8
D 12
    k=log2 531 +1 取10

4.一个具有767个节点的完全二叉树,其叶子节点个数为( B )
A 383
B 384
C 385
D 386
767个结点  是奇数,那么度为1的结点没有
 所以就是    767 = n0+n2     n0 = n2+1
所以就有767 = n0+n0-1    n0 = 384

7.二叉树的存储方式

二叉树的存储方式有 顺序存储和类似于链表的链式存储

二叉树的类似于链式存储是,一个一个节点引用起来的,这两种具体结构前面树已经提过了

(1)孩子表示法

class Node { 
int val; // 数据域
Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树 
Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树 
}

(2)孩子双亲表示法

class Node { 
int val; // 数据域 
Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树 
Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树 
Node parent; // 当前节点的根节点 
}

8.二叉树的基本操作

8.1 二叉树的4种遍历方式

树(Tree)和二叉树

 用代码将上面的这个二叉树结构穷举一遍

    static class TreeNode {
        public char val;
        public TreeNode left;
        public TreeNode right;

        public TreeNode(char val) {
            this.val = val;
        }
    }
    //二叉数的根节点
    public TreeNode root;

    public void createTree() {
        TreeNode A = new TreeNode('A');
        TreeNode B = new TreeNode('B');
        TreeNode C = new TreeNode('C');
        TreeNode D = new TreeNode('D');
        TreeNode E = new TreeNode('E');
        TreeNode F = new TreeNode('F');
        TreeNode G = new TreeNode('G');
        TreeNode H = new TreeNode('H');

        A.left = B;
        A.right = C;
        B.left = D;
        B.right = E;
        C.left = F;
        C.right = G;
        E.right = H;
        this.root = A;
    }

 (1)前序遍历(根–>左–>右)

先访问一棵树的根节点,再访问左子树,最后访问右子树。

上面的遍历次序就是  A -> B -> D -> E -> H -> C -> F -> G

    void preOrder(TreeNode root) {
        if (root == null) return;
        System.out.print(root.val + " ");
        preOrder(root.left);
        preOrder(root.right);
    }

 (2)中序遍历(左–>根–>右)

先访问一棵树的左子树,再访问根节点,最后访问右子树。

上面的遍历次序就是  D -> B -> E -> H -> A -> F -> C -> G

 void inOrder(TreeNode root) {
        if (root == null) return;
        inOrder(root.left);
        System.out.print(root.val + " ");
        inOrder(root.right);
    }

 (3)后序遍历(左–>右–>根)

先访问一棵树的左子树,再访问右子树,最后访问根节点。

上面的遍历次序就是  D -> H -> E -> B -> F -> G -> C -> A 

 void postOrde(TreeNode root) {
        if (root == null) return;
        postOrde(root.left);
        postOrde(root.right);
        System.out.print(root.val + " ");
    }

 (4)层序遍历

先访问第一层的根结点,然后从左到右访问第2层上的节点,接着访问第三层的结点。


8.2 二叉树的基本操作

(1)获取树中结点的个数size()

两种思路

子问题:先遍历左边的树,再遍历右边的树,不为null就++

遍历递归思路:只要不为null就给sizeNode++

    //1.子问题思路
     int size(TreeNode root) {
        if(root == null) return 0;
        return size(root.left) + size(root.right) + 1;
    }
    //2.遍历递归思路
    public static int sizeNode;
    void size2(TreeNode root){
        if(root == null) return;
        sizeNode++;
        size2(root.left);
        size2(root.right);
    }

(2)获取叶子结点的个数getLeafNodeCount()

还是两种思路

子问题:左树的叶子+右树的叶子 = 整棵树的叶子

遍历递归思路:遍历到叶子就++

判断是不是叶子的条件是root.left == null && root.right == nul

 //1.子问题
    int getLeafNodeCount(TreeNode root){
        if(root == null) return 0;

        if (root.left == null && root.right == null) {
            return 1;
        }
        return getLeafNodeCount(root.left) + getLeafNodeCount(root.right);
    }
    //2.遍历递归
    public static int leafSize;
    void getLeafNodeCount2(TreeNode root){
        if(root == null) return ;
        if (root.left == null && root.right == null) {
            leafSize++;
        }
        getLeafNodeCount2(root.left);
        getLeafNodeCount2(root.right);
    }

(3)获取第K层结点的个数getKLevelNodeCount()

int getKLevelNodeCount(TreeNode root, int k) {
        if(root == null) return 0;
        if (k == 1) {
            return 1;
        }
        return getKLevelNodeCount(root.left,k-1) + getKLevelNodeCount(root.right,k-1);
    }

(4)获取二叉树的高度getHeight()\

二叉树的高度–》左树高度和右树高度最大值+1

    int getHeight(TreeNode root) {
        if(root == null) return 0;
        int leftHight = getHeight(root.left);
        int rightHight = getHeight(root.right);
        return (leftHight > rightHight ?
                leftHight + 1 :
                rightHight + 1);
    }

时间复杂度O(N) 

(5)检测值为value的元素是否存在fifind()

先看根是不是要找到元素,如果不是在左子树找,还不是就右子树找

 TreeNode find(TreeNode root, int val) {
        if(root == null) return null;
        if(root.val == val) {
            return root;
        }
        TreeNode ret1 = find(root.left,val);
        if (ret1 != null) {
            return ret1;
        }
        TreeNode ret2 = find(root.right,val);
        if (ret2 != null) {
            return ret2;
        }
        return null;
    }

(6)层序遍历levelOrder()

树(Tree)和二叉树

    void levelOrder(TreeNode root) {
        if (root == null) return;
        Queue<TreeNode> queue = new LinkedList<>();
        //现将根节点放进队列中
        queue.offer(root);
        while(!queue.isEmpty()) {
            TreeNode cur = queue.poll();
            System.out.print(cur.val + " ");
            //只要子树的左右节点不为null就给队列里面放
            if (cur.left != null) {
                queue.offer(cur.left);
            }
            if (cur.right != null) {
                queue.offer(cur.right);
            }
        }
        System.out.println();
    }

 (7)判断一颗树是不是完全二叉树isCompleteTree()

在判断一颗树是不是完全二叉树前,先要明白,给队列中放元素放null

此时这个队列不为null

树(Tree)和二叉树

    boolean isCompleteTree(TreeNode root) {
        if (root == null) return true;

        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);

        while(!queue.isEmpty()) {
            TreeNode cur = queue.poll();

            if (cur != null) {
                queue.offer(cur.left);
                queue.offer(cur.right);
            }else {
                break;
            }
        }
        while(!queue.isEmpty()) {
            TreeNode cur = queue.peek();
            if (cur != null) {
                return false;
            }else {
                queue.poll();
            }
        }
        return true;
    }

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/91249.html

(0)
小半的头像小半

相关推荐

极客之音——专业性很强的中文编程技术网站,欢迎收藏到浏览器,订阅我们!