深度剖析数据在内存中的存储

导读:本篇文章讲解 深度剖析数据在内存中的存储,希望对大家有帮助,欢迎收藏,转发!站点地址:www.bmabk.com

目录:

1. 数据类型详细介绍
2. 整形在内存中的存储:原码、反码、补码
3. 大小端字节序介绍及判断
4. 浮点型在内存中的存储解析

1. 数据类型介绍

char          //字符数据类型
short         //短整型
int           //整形
long          //长整型
long long     //更长的整形
float        //单精度浮点数
double       //双精度浮点数

1.1 类型的基本归类:

整形家族:

char
unsigned char
signed char
short
unsigned short [int]
signed short [int]
int
unsigned int
signed int
long
unsigned long [int]
signed long [int]

浮点数家族:

float
double

构造类型:

> 数组类型
> 结构体类型 struct
> 枚举类型 enum
> 联合类型 union

指针类型

int *pi;
char *pc;
float* pf;
void* pv;

空类型:

void 表示空类型(无类型)
通常应用于函数的返回类型、函数的参数、指针类型。

2. 整形在内存中的存储

一个变量的创建是要在内存中开辟空间的。空间的大小是根据不同的类型而决定的。

2.1 原码、反码、补码

计算机中的整数有三种2进制表示方法,即原码、反码和补码。
三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位
正数的原、反、补码都相同。
负整数的三种表示方法各不相同。

原码
直接将数值按照正负数的形式翻译成二进制就可以得到原码。
反码
将原码的符号位不变,其他位依次按位取反就可以得到反码。

补码
反码+1就得到补码。

对于整形来说:数据存放内存中其实存放的是补码。

在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;
同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。 

 看看a=20,b=-10,在内存中的存储:

a491106780004a31b15c57fd3aa9cd1c.png

可以看到对于a和b分别存储的是补码。但是发现顺序有点不对。

 2.2 大小端介绍

什么是大端小端:
大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址
中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地
址中。

为什么有大端和小端:

为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。
例如:一个16bit 的short 型x ,在内存中的地址为0x0010 , x 的值为0x1122 ,那么0x11 为
高字节, 0x22 为低字节。对于大端模式,就将0x11 放在低地址中,即0x0010 中, 0x22 放在高地址中,即0x0011 中。小端模式,刚好相反。我们常用的X86 结构是小端模式,而KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。 

 3. 浮点型在内存中的存储

根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:

(-1)^S * M * 2^E
(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位。

举例来说:
十进制的5.0,写成二进制是101.0 ,相当于1.01×2^2 。
那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。
十进制的-5.0,写成二进制是-101.0 ,相当于-1.01×2^2 。那么,S=1,M=1.01,E=2。

IEEE 754规定:
对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。
e3bebaccbf074febbd5e8ca46491cf4e.png

对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。

722242f0e44c43129fd3616b9ac18c8d.png

IEEE 754对有效数字M和指数E,还有一些特别规定。

前面说过, 1≤M<2 ,也就是说,M可以写成1.xxxxxx 的形式,其中xxxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。
至于指数E,情况就比较复杂。
首先,E为一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

然后,指数E从内存中取出还可以再分成三种情况:

E不全为0或不全为1

这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将
有效数字M前加上第一位的1。
比如:
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为
1.0*2^(-1),其阶码为-1+127=126,表示为
01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进
制表示形式为:

0 01111110 00000000000000000000000 

E全为0

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,
有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于
0的很小的数字。 

E全为1

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);

 

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/94507.html

(0)
小半的头像小半

相关推荐

极客之音——专业性很强的中文编程技术网站,欢迎收藏到浏览器,订阅我们!