08-高性能表结构及索引设计最佳实践-02

导读:本篇文章讲解 08-高性能表结构及索引设计最佳实践-02,希望对大家有帮助,欢迎收藏,转发!站点地址:www.bmabk.com

MySQL索引辨析

范例表说明

经常使用到InnoDB表order_exp,基础表结构如下:

在这里插入图片描述
数据量大概在1万多行。
在这里插入图片描述
同时还有个几个派生表如s1,s2,order_exp_cut,表结构基本和order_exp一致,有少许差别,数据量上也比order_exp少:

在这里插入图片描述
在这里插入图片描述

InnoDB中的索引复习

聚集索引/聚簇索引

InnoDB中使用了聚集索引,就是将表的主键用来构造一棵B+树,并且将整张表的行记录数据存放在该B+树的叶子节点中。

辅助索引/二级索引

对于辅助索引(Secondary Index,也称二级索引、非聚集索引),叶子节点并不包含行记录的全部数据。叶子节点除了包含键值以外,每个叶子节点中的索引行中还包含了相应行数据的聚集索引键。
在这里插入图片描述

回表

辅助索引的存在并不影响数据在聚集索引中的组织,因此每张表上可以有多个辅助索引。当通过辅助索引来寻找数据时,InnoDB存储引擎会遍历辅助索引并通过叶级别的指针获得指向主键索引的主键,然后再通过主键索引(聚集索引)来找到一个完整的行记录。这个过程也被称为回表。也就是根据辅助索引的值查询一条完整的用户记录需要使用到2棵B+树—-一次辅助索引,一次聚集索引。

联合索引/复合索引

前面我们对索引的描述,隐含了一个条件,那就是构建索引的字段只有一个,但实践工作中构建索引的完全可以是多个字段。所以,将表上的多个列组合起来进行索引我们称之为联合索引或者复合索引,比如index(a,b)就是将a,b两个列组合起来构成一个索引。

自适应哈希索引

InnoDB存储引擎除了我们前面所说的各种索引,还有一种自适应哈希索引,我们知道B+树的查找次数,取决于B+树的高度,在生产环境中,B+树的高度一般为34层,故需要34次的IO查询。

全文检索之倒排索引

什么是全文检索(Full-Text Search)?它是将存储于数据库中的整本书或整篇文章中的任意内容信息查找出来的技术。它可以根据需要获得全文中有关章、节、段、句、词等信息,也可以进行各种统计和分析。我们比较熟知的Elasticsearch、Solr等就是全文检索引擎,底层都是基于Apache Lucene的。举个例子,现在我们要保存唐宋诗词,数据库中我们们会怎么设计?诗词表我们可能的设计如下:
在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/94907.html

(0)
小半的头像小半

相关推荐

极客之音——专业性很强的中文编程技术网站,欢迎收藏到浏览器,订阅我们!