文章目录
【MySQL】索引
1. 什么是索引
索引是通过某种算法,构建出一个数据模型,用于快速找出在某个列中有一特定值的行
就像新华字典的根据拼音查询一个字一样,如果没有索引就需要一页一页查找,效率极慢,这样表数据越多,查询的时间就会越长。
如果表中查询的列有一个索引,MySQL能够快速到达一个位置去搜索数据文件,而不必查看所有数据,那么将会节省很大一部分时间。
根据实现方式分类,可以分为 Hash索引 与 B+Tree索引
- Hash索引:索引字段值通过某种算法公式算出一个hashCode,当查询这个字段的时候通过这个公式就可以计算出hashCode,然后就可以快速找到该行数据;就算一个hashCode对应了多行的数据,那也比遍历全表速度快。
2. 索引的分类
按照功能来分,索引划分为以下分类:
2.1 单列索引
**单列索引:一个索引只包含单个列,但一个表中可以有多个单列索引
- 唯一索引:与前面的普通索引类似,不同的就是:索引列的值必须唯一,但允许有空值。如果是组合索引,则列值的组合必须唯一。它有以下几种创建方式:
- 主键索引:每张表一般都会有自己的主键,当我们在创建表时,MySQL会自动在主键列上建立一个索引。主键是具有唯一性并且不允许为NULL,所以他是一种特殊的唯一索引。
2.2 组合索引
- 组合索引也叫复合索引,指的是我们在建立索引的时候使用多个字段,例如同时使用身份证和手机号建立索引,同样的可以建立为普通索引或者是唯一索引。
- 复合索引的使用复合最左原则。
什么是最左原则?
-- 创建索引的基本语法
create index index_phone_name on student(phone_num,name);
就比如说这里索引有两个字段phone_num和name
select * from student where name = '张三';
select * from student where phone_num = '15100046637';
select * from student where phone_num = '15100046637' and name = '张三';
select * from student where name = '张三' and phone_num = '15100046637';
三条sql只有 2 、 3、4能使用的到索引idx_phone_name,因为条件里面必须包含索引前面的字段 才能够进行匹配。
而3和4相比where条件的顺序不一样,为什么4可以用到索引呢?
是因为mysql本身就有一层sql优化,他会根据sql来识别出来该用哪个索引,我们可以理解为3和4在mysql眼中是等价的。
2.3 全文索引
- 全文索引的关键字是fulltext
- 全文索引主要用来查找文本中的关键字,而不是直接与索引中的值相比较,它更像是一个搜索引擎,基于相似度的查询,而不是简单的where语句的参数匹配。
用 like + % 就可以实现模糊匹配了,为什么还要全文索引?
like + % 在文本比较少时是合适的,但是对于大量的文本数据检索,是不可想象的。全文索引在大量的数据面前,能比 like + % 快 N 倍,速度不是一个数量级,但是全文索引可能存在精度问题。
但是有些mysql版本是不支持全文索引的
- MySQL 5.6 以前的版本,只有 MyISAM 存储引擎支持全文索引;
- MySQL 5.6 及以后的版本,MyISAM 和 InnoDB 存储引擎均支持全文索引;
- 只有字段的数据类型为 char、varchar、text 及其系列才可以建全文索引;
在数据量较大时候,现将数据放入一个没有全局索引的表中,然后再用create index创建fulltext索引,要比先为一张表建立fulltext然后再将数据写入的速度快很多;
MySQL 中的全文索引,有两个变量,最小搜索长度和最大搜索长度
对于长度小于最小搜索长度和大于最大搜索长度的词语,都不会被索引。
通俗点就是说,想对一个词语使用全文索引搜索,那么这个词语的长度必须在以上两个变量的区间内。这两个的默认值可以使用以下命令查看:
show variables like '%ft%';
# | 参数名称 | 默认值 | 最小值 | 最大值 | 作用 |
---|---|---|---|---|---|
1 | ft_min_word_len | 4 | 1 | 3600 | MyISAM 引擎表全文索引包含的最小词长度 |
2 | ft_query_expansion_limit | 20 | 0 | 1000 | MyISAM引擎表使用 with query expansion 进行全文搜索的最大匹配数 |
3 | innodb_ft_min_token_size | 3 | 0 | 16 | InnoDB 引擎表全文索引包含的最小词长度 |
4 | innodb_ft_max_token_size | 84 | 10 | 84 | InnoDB 引擎表全文索引包含的最大词长度 |
2.3.1 使用全文索引
和常用的模糊匹配使用 like + % 不同,全文索引有自己的语法格式,使用 match 和 against 关键字,格式:
match (col1,col2,...) against(expr [search_modifier])
select * from t_article where match(content) against('yo’); -- 没有结果 单词数需要大于等于3
select * from t_article where match(content) against('you'); -- 有结果
2.4 空间索引
- MySQL在5.7之后的版本支持了空间索引,而且支持OpenGIS几何数据模型
- 空间索引是对空间数据类型的字段建立的索引,MYSQL中的空间数据类型有4种,分别是GEOMETRY、POINT、LINESTRING、POLYGON。
- MYSQL使用SPATIAL关键字进行扩展,使得能够用于创建正规索引类型的语法创建空间索引。
- 创建空间索引的列,必须将其声明为NOT NULL。
- 空间索引一般是用的比较少,了解即可。
类型 | 含义 | 说明 |
---|---|---|
Geometry | 空间数据 | 任何一种空间类型 |
Point | 点 | 坐标值 |
LineString | 线 | 有一系列点连接而成 |
Polygon | 多边形 | 由多条线组成 |
create table shop_info (
id int primary key auto_increment comment 'id',
shop_name varchar(64) not null comment '门店名称',
geom_point geometry not null comment '经纬度’,
spatial key geom_index(geom_point)
);
3. 索引的特点
3.1 索引的优点
- 大大加快数据的查询速度
- 使用分组和排序进行数据查询时,可以显著减少查询时分组和排序的时间
- 创建唯一索引,能够保证数据库表中每一行数据的唯一性
- 在实现数据的参考完整性方面,可以加速表和表之间的连接
3.2 索引的缺点
- 创建索引和维护索引需要消耗时间,并且随着数据量的增加,时间也会增加
- 索引需要占据磁盘空间
- 对数据表中的数据进行增加,修改,删除时,索引也要动态的维护,降低了维护的速度
4. 创建索引的原则
- 更新频繁的列不应设置索引
- 数据量小的表不要使用索引(毕竟总共2页的文档,还要目录吗?)
- 重复数据多的字段不应设为索引(比如性别,只有男和女,一般来说:重复的数据超过百分之15就不该建索引)
- 首先应该考虑对where 和 order by 涉及的列上建立索引
5. 索引内部原理
索引其内部有Hash算法与B+Tree
5.1 Hash算法
通过某一个公式算出hashCode,然后通过hashCode快速找到需要的数据
**优点:**通过字段的值计算的hash值,定位数据非常快。
**缺点:**不能进行范围查找,因为散列表中的值是无序的,无法进行大小的比较。
5.2 B+TREE树
目前大部分数据库系统及文件系统都采用B-Tree或其变种B+Tree作为索引结构,Btree结构可以有效的解决之前的相关算法遇到的问题。
可以通过下面的这个网站可视化理解B+TREE的插入查询删除数据的流程
3是指三阶,当数据等于三个之后,就会变成树木,第二个数据就会父节点,以此类推
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/94986.html