TensorFlow 生成 常量、序列和随机值
生成常量
tf.constant()
这种形式比较常见,除了这一种生成常量的方式之外,像Numpy一样,TensorFlow也提供了生成集中特殊的常量的函数:
tf.zeros(shape, dtype=tf.float32, name=None)
三个参数的意思显而易见,返回指定形状的全零张量
tf.zeros_like(tensor, dtype=None, name=None, optimizer=True)
与函数的名字一致,传入一个张量,最后返回一个张量,与传入的张量拥有一样的形状和数据类型,也可以自己传入dtype指定数据类型
-
tf.ones()
和tf.ones_like()
与之前的函数对应一致 -
tf.fill(shape, value, name=None)
返回填满指定输入的数值的张量,例如:
tf.fill([2,3],9)
返回的张量就是:
[[9 9 9]
[9 9 9]]
生成序列
tf.linspace(start, stop, num, name=None)
函数名称与Numpy中序列的函数一样,只是参数部分进行了简化,前两个参数分别指定了开始和结束的值,num指定了要生成的数量,最后则是名称,例如:
a = tf.linspace(1.0, 10.0, 10, name='lin1')
输出:
[ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
tf.range(start, limit, delta, dtype=None, name=None)
例如:
a = tf.range(1, 5, 1)
输出:
[1 2 3 4]
随机张量
随机值在TensorFlow中很重要,很多情况下的初始值往往会随机值,常用的随机值生成函数如下:
- 生成均匀分布的随机张量
# 调用格式
random_uniform(
shape,
minval=0,
maxval=None, # 最大值以及最小值
dtype=tf.float32,
seed=None, # 指定种子
name=None
)
# 例如
a = tf.random_uniform([2,3], minval=1.0, maxval=5.0, dtype=tf.float32)
# 输出
[[4.458698 4.091486 4.3704953]
[3.893827 2.7951822 2.2381153]]
- 生成服从正态分布的随机张量
# 调用格式
random_normal(
shape,
mean=0.0, # 均值
stddev=1.0, # 标准差
dtype=tf.float32,
seed=None,
name=None
)
a = tf.random_normal([2,3], mean=3.0, stddev=1.0, dtype=tf.float32)
[[3.65199 1.879906 2.1775374]
[1.6041888 1.503772 2.704612 ]]
- 生成服从截断正态分布的随机张量
# 调用格式
tf.truncated_normal(
shape,
mean=0.0,
stddev=1.0,
dtype=tf.float32,
seed=None,
name=None
)
[[4.477414 2.9767075 2.377511 ]
[2.7083392 4.2639837 2.497882 ]]
这个函数与正态分布的函数使用时一样的,只是增加了 “截断” 也就是限制每个元素的取值,如果其平均值大于 2 个标准差的值将被丢弃并重新选择 。
以上~
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/116731.html