十 其他
10.1 redis持久化
Redis 的数据全部在内存里,如果突然宕机,数据就会全部丢失,因此必须有一种机制来保证 Redis 的数据不会因为故障而丢失,这种机制就是 Redis 的持久化机制。
Redis 的持久化机制有两种,第一种是RDB快照,第二种是 AOF 日志。
快照是一次全量备份,AOF 日志是连续的增量备份。
快照是内存数据的二进制序列化形式,在存储上非常紧凑,
而 AOF 日志记录的是内存数据修改的指令记录文本。
1、RDB快照
RDB快照是某个时间点的一次全量数据备份,是二进制文件,在存储上非常紧凑。
1.1 触发机制
RDB持久化触发机制分为:手动触发和自动触发
手动触发
save命令:会阻塞当前服务器,直到RDB完成为止,如果数据量大的话会造成长时间的阻塞,线上环境一般禁止使用
bgsave命令:就是background save,执行bgsave命令时Redis主进程会fork一个子进程来完成RDB的过程,完成后自动结束(操作系统的多进程Copy On Write机制,简称COW)。所以Redis主进程阻塞时间只有fork阶段的那一下。相对于save,阻塞时间很短。
自动触发
场景一:配置redis.conf,触发规则,自动执行
# 当在规定的时间内,Redis发生了写操作的个数满足条件,会触发发生BGSAVE命令。
# save <seconds> <changes>
# 当用户设置了多个save的选项配置,只要其中任一条满足,Redis都会触发一次BGSAVE操作
save 900 1
save 300 10
save 60 10000
# 以上配置的含义:900秒之内至少一次写操作、300秒之内至少发生10次写操作、
# 60秒之内发生至少10000次写操作,只要满足任一条件,均会触发bgsave
场景二:执行shutdown命令关闭服务器时,如果没有开启AOF持久化功能,那么会自动执行一次bgsave
场景三:主从同步(slave和master建立同步机制)
1.2 RDB执行流程
Redis 使用操作系统的多进程 cow(Copy On Write) 机制来实现RDB快照持久化
执行bgsave命令的时候,Redis主进程会检查是否有子进程在执行RDB/AOF持久化任务,如果有的话,直接返回Redis主进程会fork一个子进程来执行执行RDB操作,fork操作会对主进程造成阻塞(影响Redis的读写),fork操作完成后会发消息给主进程,从而不再阻塞主进程。(阻塞仅指主进程fork子进程的过程,后续子进程执行操作时不会阻塞)RDB子进程会根据Redis主进程的内存生成临时的快照文件,持久化完成后会使用临时快照文件替换掉原来的RDB文件。(该过程中主进程的读写不受影响,但Redis的写操作不会同步到主进程的主内存中,而是会写到一个临时的内存区域作为一个副本)子进程完成RDB持久化后会发消息给主进程,通知RDB持久化完成(将上阶段内存副本中的增量写数据同步到主内存)
1.3 RDB的优缺点
优点
RDB文件小,非常适合定时备份,用于灾难恢复Redis加载RDB文件的速度比AOF快很多,因为RDB文件中直接存储的时内存数据,而AOF文件中存储的是一条条命令,需要重演命令。
缺点
RDB无法做到实时持久化,若在两次bgsave间宕机,则会丢失区间(分钟级)的增量数据,不适用于实时性要求较高的场景RDB的cow机制中,fork子进程属于重量级操作,并且会阻塞redis主进程存在老版本的Redis不兼容新版本RDB格式文件的问题
2、AOF(append only file)日志
AOF日志是持续增量的备份,是基于写命令存储的可读的文本文件。AOF日志会在持续运行中持续增大,由于Redis重启过程需要优先加载AOF日志进行指令重放以恢复数据,恢复时间会无比漫长。所以需要定期进行AOF重写,对AOF日志进行瘦身。目前AOF是Redis持久化的主流方式。
2.1 开启方式
AOF默认是关闭的,通过redis.conf配置文件进行开启
## 此选项为aof功能的开关,默认为“no”,可以通过“yes”来开启aof功能
## 只有在“yes”下,aof重写/文件同步等特性才会生效
appendonly yes
## 指定aof文件名称
appendfilename appendonly.aof
## 指定aof操作中 文件同步策略,有三个合法值:always everysec no,默认为everysec
# always(每次)
# 每次写入操作均同步到AOF文件中,数据零误差,性能较低,如果不是对数据非常严格不建议使用
# everysec(每秒)
# 每秒将缓冲区中的指令同步到AOF文件中,数据准确性较高,性能较高,建议使用,也是默认配置。在系统突然宕机的情况下丢失1秒内的数据
# no(系统控制)
#由操作系统控制每次同步到AOF文件的周期,整体过程不可控
#
#
appendfsync everysec
## 在aof-rewrite期间,appendfsync是否暂缓文件同步,"no"表示“不暂缓”,“yes”表示“暂缓”,默认为“no”
no-appendfsync-on-rewrite no
## aof文件rewrite触发的最小文件尺寸(mb,gb),只有大于此aof文件大于此尺寸是才会触发rewrite,默认“64mb”,建议“512mb”
auto-aof-rewrite-min-size 64mb
## 相对于“上一次”rewrite,本次rewrite触发时aof文件应该增长的百分比
## 每一次rewrite之后,redis都会记录下此时“新aof”文件的大小(例如A)
## aof文件增长到A*(1 + p)之后,触发下一次rewrite,每一次aof记录的添加,都会检测当前aof文件的尺寸。
auto-aof-rewrite-percentage 100
AOF是文件操作,对于变更操作比较密集的server,那么将造成磁盘IO的负荷加重。此外linux对文件操作采取了“延迟写入”手段,即并非每次write操作都会触发实际磁盘操作,而是进入了buffer中,当buffer数据达到阀值时触发实际写入(也有其他时机),这是linux对文件系统的优化。
Linux 的glibc提供了fsync(int fd)函数可以将指定文件的内容强制从内核缓存刷到磁盘。只要 Redis 进程实时调用 fsync 函数就可以保证 aof 日志不丢失。但是 fsync 是一个磁盘 IO 操作,它很慢!如果 Redis 执行一条指令就要 fsync 一次,那么 Redis 高性能的地位就不保了。
2.2 重写(rewrite)机制
AOF日志会在持续运行中持续增大,需要定期进行AOF重写,对AOF日志进行瘦身。
AOF Rewrite 虽然是“压缩”AOF文件的过程,但并非采用“基于原AOF文件”来重写或压缩,而是采取了类似RDB快照的方式:基于Copy On Write,全量遍历内存中数据,然后逐个序列到AOF文件中。因此AOF rewrite能够正确反应当前内存数据的状态。
AOF重写(bgrewriteaof)和RDB快照写入(bgsave)过程类似,二者都消耗磁盘IO。Redis采取了“schedule”策略:无论是“人工干预”还是系统触发,快照和重写需要逐个被执行。
重写过程中,对于新的变更操作将仍然被写入到原AOF文件中,同时这些新的变更操作也会被Redis收集起来。当内存中的数据被全部写入到新的AOF文件之后,收集的新的变更操作也将被一并追加到新的AOF文件中。然后将新AOF文件重命名为appendonly.aof,使用新AOF文件替换老文件,此后所有的操作都将被写入新的AOF文件。
2.3 触发机制
和RDB类似,AOF触发机制也分为:手动触发和自动触发
手动触发 直接调用bgrewriteaof命令
redis-cli -h ip -p port bgrewriteaof
自动触发
根据auto-aof-rewrite-min-size和auto-aof-rewrite-percentage参数确定自动触发时机
auto-aof-rewrite-min-size:表示运行AOF重写时文件最小体积,默认为64MB(我们线上是512MB)。
auto-aof-rewrite-percentage:代表当前AOF文件空间(aof_current_size)和上一次重写后AOF文件空间(aof_base_size)的值
自动触发时机:
(aof_current_size > auto-aof-rewrite-min-size ) && (aof_current_size - aof_base_size) / aof_base_size >= auto-aof-rewrite-percentage
其中aof_current_size和aof_base_size可以在info Persistence统计信息中查看。
2.4 AOF的优缺点
优点 AOF只是追加写日志文件,对服务器性能影响较小,速度比RDB要快,消耗的内存较少
缺点
AOF方式生成的日志文件太大,需要不断AOF重写,进行瘦身。 即使经过AOF重写瘦身,由于文件是文本文件,文件体积较大(相比于RDB的二进制文件)。 AOF重演命令式的恢复数据,速度显然比RDB要慢。
3、Redis 4.0 混合持久化
仅使用RDB快照方式恢复数据,由于快照时间粒度较大,时回丢失大量数据。仅使用AOF重放方式恢复数据,日志性能相对 rdb 来说要慢。在 Redis 实例很大的情况下,启动需要花费很长的时间。
Redis 4.0 为了解决这个问题,带来了一个新的持久化选项——混合持久化。将 rdb 文件的内容和增量的 AOF 日志文件存在一起。这里的 AOF 日志不再是全量的日志,而是自持久化开始到持久化结束的这段时间发生的增量 AOF 日志,通常这部分 AOF 日志很小。相当于:
大量数据使用粗粒度(时间上)的rdb快照方式,性能高,恢复时间快。增量数据使用细粒度(时间上)的AOF日志方式,尽量保证数据的不丢失。
在 Redis 重启的时候,可以先加载 rdb 的内容,然后再重放增量 AOF 日志就可以完全替代之前的 AOF 全量文件重放,重启效率因此大幅得到提升。
混合持久化是最佳方式吗?
不一定。
首先,混合持久化是Redis 4.0才引入的特性,现在很多 公司可能都还在使用3.x版本。使用不了这一特性。
另外,可以使用下面这种方式。Master使用AOF,Slave使用RDB快照,master需要首先确保数据完整性,它作为数据备份的第一选择;slave提供只读服务或仅作为备机,它的主要目的就是快速响应客户端read请求或灾切换。
10.2 Redis中key的过期策略
我们都知道,Redis是key-value数据库,我们可以设置Redis中缓存的key的过期时间。Redis的过期策略就是指当Redis中缓存的key过期了,Redis如何处理。
过期策略通常有以下三种:
- 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。
- 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。
- 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。
(expires字典会保存所有设置了过期时间的key的过期时间数据,其中,key是指向键空间中的某个键的指针,value是该键的毫秒精度的UNIX时间戳表示的过期时间。键空间是指该Redis集群中保存的所有键。)
Redis中同时使用了惰性过期和定期过期两种过期策略。
Redis key的过期时间和永久有效分别怎么设置?**
EXPIRE和PERSIST命令。
我们知道通过expire来设置key 的过期时间,那么对过期的数据怎么处理呢?
除了缓存服务器自带的缓存失效策略之外(Redis默认的有6中策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种:
- 定时去清理过期的缓存;
- 当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。
两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,大家可以根据自己的应用场景来权衡。
10.3 Redis的内存淘汰策略
Redis的内存淘汰策略是指在Redis的用于缓存的内存不足时,怎么处理需要新写入且需要申请额外空间的数据。
全局的键空间选择性移除
- noeviction:当内存不足以容纳新写入数据时,新写入操作会报错。
- allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key。(这个是最常用的)
- allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个key。
设置过期时间的键空间选择性移除
- volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的key。
- **volatile-random:**当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个key。
- **volatile-ttl:**当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的key优先移除。
10.4 Redis线程模型
Redis基于Reactor模式开发了网络事件处理器,这个处理器被称为文件事件处理器(file event handler)。它的组成结构为4部分:多个套接字、IO多路复用程序、文件事件分派器、事件处理器。因为文件事件分派器队列的消费是单线程的,所以Redis才叫单线程模型。
- 文件事件处理器使用 I/O 多路复用(multiplexing)程序来同时监听多个套接字, 并根据套接字目前执行的任务来为套接字关联不同的事件处理器。
- 当被监听的套接字准备好执行连接应答(accept)、读取(read)、写入(write)、关闭(close)等操作时, 与操作相对应的文件事件就会产生, 这时文件事件处理器就会调用套接字之前关联好的事件处理器来处理这些事件。
虽然文件事件处理器以单线程方式运行, 但通过使用 I/O 多路复用程序来监听多个套接字, 文件事件处理器既实现了高性能的网络通信模型, 又可以很好地与 redis 服务器中其他同样以单线程方式运行的模块进行对接, 这保持了 Redis 内部单线程设计的简单性。
10.5 Redis事务[了解]
Redis事务的三个阶段**
- **事务开始 MULTI**
- **命令入队**
- **事务执行 EXEC**
事务执行过程中,如果服务端收到有EXEC、DISCARD、WATCH、MULTI之外的请求,将会把请求放入队列中排队。
**Redis事务相关命令**
Redis事务功能是通过MULTI、EXEC、DISCARD和WATCH 四个原语实现的。
Redis会将一个事务中的所有命令序列化,然后按顺序执行。
**1)**redis 不支持回滚,“Redis 在事务失败时不进行回滚,而是继续执行余下的命令”, 所以 Redis 的内部可以保持简单且快速。
**2)**如果在一个事务中的命令出现错误,那么所有的命令都不会执行;
**.3)**如果在一个事务中出现运行错误,那么正确的命令会被执行。
- WATCH 命令是一个乐观锁,可以为 Redis 事务提供 check-and-set (CAS)行为。可以监控一个或多个键,一旦其中有一个键被修改(或删除),之后的事务就不会执行,监控一直持续到EXEC命令。
- MULTI命令用于开启一个事务,它总是返回OK。MULTI执行之后,客户端可以继续向服务器发送任意多条命令,这些命令不会立即被执行,而是被放到一个队列中,当EXEC命令被调用时,所有队列中的命令才会被执行。
- EXEC:执行所有事务块内的命令。返回事务块内所有命令的返回值,按命令执行的先后顺序排列。当操作被打断时,返回空值 nil 。
- 通过调用DISCARD,客户端可以清空事务队列,并放弃执行事务, 并且客户端会从事务状态中退出。
- UNWATCH命令可以取消watch对所有key的监控。
**事务管理(ACID)概述**
**原子性(Atomicity):**原子性是指事务是一个不可分割的工作单位,事务中的操作要么都发生,要么都不发生。
**一致性(Consistency):**事务前后数据的完整性必须保持一致。
**隔离性(Isolation):**多个事务并发执行时,一个事务的执行不应影响其他事务的执行。
**持久性(Durability):**持久性是指一个事务一旦被提交,它对数据库中数据的改变就是永久性的,接下来即使数据库发生故障也不应该对其有任何影响
**Redis的事务总是具有ACID中的一致性和隔离性,**其他特性是不支持的。当服务器运行在AOF持久化模式下,并且appendfsync选项的值为always时,事务也具有耐久性。
**Redis事务支持隔离性吗?**
Redis 是单进程程序,并且它保证在执行事务时,不会对事务进行中断,事务可以运行直到执行完所有事务队列中的命令为止。因此,Redis 的事务是总是带有隔离性的。
**Redis事务保证原子性吗,支持回滚吗?**
Redis中,单条命令是原子性执行的,但事务不保证原子性,且没有回滚。事务中任意命令执行失败,其余的命令仍会被执行。
*、Redis事务其他实现**
- 基于Lua脚本,Redis可以保证脚本内的命令一次性、按顺序地执行,其同时也不提供事务运行错误的回滚,执行过程中如果部分命令运行错误,剩下的命令还是会继续运行完
- 基于中间标记变量,通过另外的标记变量来标识事务是否执行完成,读取数据时先读取该标记变量判断是否事务执行完成。但这样会需要额外写代码实现,比较繁琐。
10.6 缓存问题
缓存异常
A、缓存雪崩
缓存雪崩是指缓存同一时间大面积的失效,所以,后面的请求都会落到数据库上,造成数据库短时间内承受大量请求而崩掉。
解决方案:
- 缓存数据的过期时间设置随机,防止同一时间大量数据过期现象发生。
- 一般并发量不是特别多的时候,使用最多的解决方案是加锁排队。
- 给每一个缓存数据增加相应的缓存标记,记录缓存的是否失效,如果缓存标记失效,则更新数据缓存。
B、缓存穿透
缓存穿透是指缓存和数据库中都没有的数据,导致所有的请求都落到数据库上,造成数据库短时间内承受大量请求而崩掉。
解决方案:
- 接口层增加校验,如用户鉴权校验,id做基础校验,id<=0的直接拦截;
- 从缓存取不到的数据,在数据库中也没有取到,这时也可以将key-value对写为key-null,缓存有效时间可以设置短点,如30秒(设置太长会导致正常情况也没法使用)。这样可以防止攻击用户反复用同一个id暴力攻击
- 采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的 bitmap 中,一个一定不存在的数据会被这个 bitmap 拦截掉,从而避免了对底层存储系统的查询压力
附加:
对于空间的利用到达了一种极致,那就是Bitmap和布隆过滤器(Bloom Filter)。
**Bitmap:**典型的就是哈希表
缺点是,Bitmap对于每个元素只能记录1bit信息,如果还想完成额外的功能,恐怕只能靠牺牲更多的空间、时间来完成了。
布隆过滤器(推荐)
就是引入了k(k>1)k(k>1)个相互独立的哈希函数,保证在给定的空间、误判率下,完成元素判重的过程。
它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。
Bloom-Filter算法的核心思想就是利用多个不同的Hash函数来解决“冲突”。
Hash存在一个冲突(碰撞)的问题,用同一个Hash得到的两个URL的值有可能相同。为了减少冲突,我们可以多引入几个Hash,如果通过其中的一个Hash值我们得出某元素不在集合中,那么该元素肯定不在集合中。只有在所有的Hash函数告诉我们该元素在集合中时,才能确定该元素存在于集合中。这便是Bloom-Filter的基本思想。
Bloom-Filter一般用于在大数据量的集合中判定某元素是否存在。
*** C、缓存击穿**
缓存击穿是指缓存中没有但数据库中有的数据(一般是缓存时间到期),这时由于并发用户特别多,同时读缓存没读到数据,又同时去数据库去取数据,引起数据库压力瞬间增大,造成过大压力。和缓存雪崩不同的是,缓存击穿指并发查同一条数据,缓存雪崩是不同数据都过期了,很多数据都查不到从而查数据库。
解决方案
- 设置热点数据永远不过期。
- 加互斥锁,互斥锁
*D、缓存预热
缓存预热就是系统上线后,将相关的缓存数据直接加载到缓存系统。这样就可以避免在用户请求的时候,先查询数据库,然后再将数据缓存的问题!用户直接查询事先被预热的缓存数据!
解决方案:
- 直接写个缓存刷新页面,上线时手工操作一下;
- 数据量不大,可以在项目启动的时候自动进行加载;
- 定时刷新缓存;
灰色发布
E、缓存降级
当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。、
缓存降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。
在进行降级之前要对系统进行梳理,看看系统是不是可以丢卒保帅;从而梳理出哪些必须誓死保护,哪些可降级;比如可以参考日志级别设置预案:
- 一般:比如有些服务偶尔因为网络抖动或者服务正在上线而超时,可以自动降级;
- 警告:有些服务在一段时间内成功率有波动(如在95~100%之间),可以自动降级或人工降级,并发送告警;
- 错误:比如可用率低于90%,或者数据库连接池被打爆了,或者访问量突然猛增到系统能承受的最大阀值,此时可以根据情况自动降级或者人工降级;
- **严重错误:**比如因为特殊原因数据错误了,此时需要紧急人工降级。
服务降级的目的,是为了防止Redis服务故障,导致数据库跟着一起发生雪崩问题。因此,对于不重要的缓存数据,可以采取服务降级策略,例如一个比较常见的做法就是,Redis出现问题,不去数据库查询,而是直接返回默认值给用户。
F、热点数据和冷数据
热点数据,缓存才有价值。
对于冷数据而言,大部分数据可能还没有再次访问到就已经被挤出内存,不仅占用内存,而且价值不大。频繁修改的数据,看情况考虑使用缓存
对于热点数据,比如我们的某IM产品,生日祝福模块,当天的寿星列表,缓存以后可能读取数十万次。再举个例子,某导航产品,我们将导航信息,缓存以后可能读取数百万次。
数据更新前至少读取两次,缓存才有意义。这个是最基本的策略,如果缓存还没有起作用就失效了,那就没有太大价值了。
那存不存在,修改频率很高,但是又不得不考虑缓存的场景呢?有!比如,这个读取接口对数据库的压力很大,但是又是热点数据,这个时候就需要考虑通过缓存手段,减少数据库的压力,比如我们的某助手产品的,点赞数,收藏数,分享数等是非常典型的热点数据,但是又不断变化,此时就需要将数据同步保存到Redis缓存,减少数据库压力。
G、缓存热点key
缓存中的一个Key(比如一个促销商品),在某个时间点过期的时候,恰好在这个时间点对这个Key有大量的并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。
解决方案:
对缓存查询加锁,如果KEY不存在,就加锁,然后查DB入缓存,然后解锁;其他进程如果发现有锁就等待,然后等解锁后返回数据或者进入DB查询
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/117995.html