文章目录
一、理解信息增益
几个概念:
熵:表示随机变量的不确定性。
条件熵:在一个条件下,随机变量的不确定性。
信息增益:熵 – 条件熵。信息增益代表了在一个条件下,信息不确定性减少的程度。
例子:
通俗地讲,X(明天下雨)是一个随机变量,X的熵可以算出来, Y(明天阴天)也是随机变量,在阴天情况下下雨的信息熵我们如果也知道的话(此处需要知道其联合概率分布或是通过数据估计)即是条件熵。X的熵减去Y条件下X的熵,就是信息增益。
具体解释:原本明天下雨的信息熵是2,条件熵是0.01(因为如果知道明天是阴天,那么下雨的概率很大,信息量少),这样相减后为1.99。在获得阴天这个信息后,下雨信息不确定性减少了1.99,不确定减少了很多,所以信息增益大。也就是说,阴天这个信息对明天下午这一推断来说非常重要。所以在特征选择的时候常常用信息增益,如果IG(信息增益大)的话那么这个特征对于分类来说很关键,决策树就是这样来找特征的。
二、信息增益在决策树算法中的应用
在决策树算法的学习过程中,信息增益是特征选择的一个重要指标,它定义为一个特征能够为分类系统带来多少信息,带来的信息越多,说明该特征越重要,相应的信息增益也就越大。
前面我们说,信息增益代表了在一个条件下,信息不确定性减少的程度。
那么我们现在也很好理解了,在决策树算法中,我们的关键就是每次选择一个特征,特征有多个,那么到底按照什么标准来选择哪一个特征。这个问题就可以用信息增益来度量。如果选择一个特征后,信息增益最大(信息不确定性减少的程度最大),那么我们就选取这个特征。
参考链接
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/118906.html