JUC并发编程 Ⅲ — 共享模型之内存

导读:本篇文章讲解 JUC并发编程 Ⅲ — 共享模型之内存,希望对大家有帮助,欢迎收藏,转发!站点地址:www.bmabk.com,来源:原文

也许你感觉自己的努力总是徒劳无功,但不必怀疑,你每天都离顶点更进一步。今天的你离顶点还遥遥无期。但你通过今天的努力,积蓄了明天勇攀高峰的力量。加油!

Java 内存模型

JMM 即 Java Memory Model,它定义了主存、工作内存抽象概念,底层对应着 CPU 寄存器、缓存、硬件内存、 CPU 指令优化等。

JMM的意义

  • 计算机硬件底层的内存结构过于复杂,JMM的意义在于避免程序员直接管理计算机底层内存,用一些关键字synchronized、volatile等可以方便的管理内存。

JMM 体现在以下几个方面

  • 原子性 – 保证指令不会受到线程上下文切换的影响 (我们前文所说的Monitor关注的就是临界区代码的原子性)
  • 可见性 – 保证指令不会受 cpu 缓存的影响
  • 有序性 – 保证指令不会受 cpu 指令并行优化的影响

可见性

引例

先来看一个现象,main 线程对 run 变量的修改对于 t 线程不可见,导致了 t 线程无法停止:

static boolean run = true;
public static void main(String[] args) throws InterruptedException {
    Thread t = new Thread(()->{
        while(run){
            // ....
        }
    });
    t.start();
    sleep(1);
    run = false; // 线程t不会如预想的停下来
}

为什么呢?分析一下:

  1. 初始状态, t 线程刚开始从主内存读取了 run 的值到工作内存。

    在这里插入图片描述

  2. 因为 t 线程要频繁从主内存中读取 run 的值,JIT 编译器会将 run 的值缓存至自己工作内存中的高速缓存中, 减少对主存中 run 的访问,提高效率

    在这里插入图片描述

  3. 1 秒之后,main 线程修改了 run 的值,并同步至主存,而 t 是从自己工作内存中的高速缓存中读取这个变量 的值,结果永远是旧值

    在这里插入图片描述

解决方法

volatile(易变关键字)

它可以用来修饰成员变量和静态成员变量,他可以避免线程从自己的工作缓存中查找变量的值,必须到主存中获取 它的值,线程操作 volatile 变量都是直接操作主存

可见性 vs 原子性

前面引例体现的实际就是可见性,它保证的是在多个线程之间,一个线程对 volatile 变量的修改对另一个线程可见, 不能保证原子性,仅用在一个写线程,多个读线程的情况: 上例从字节码理解是这样的:

getstatic run // 线程 t 获取 run true 
getstatic run // 线程 t 获取 run true 
getstatic run // 线程 t 获取 run true 
getstatic run // 线程 t 获取 run true 
putstatic run // 线程 main 修改 run 为 false, 仅此一次
getstatic run // 线程 t 获取 run false 

比较一下之前我们将线程安全时举的例子:两个线程一个 i++ 一个 i– ,只能保证看到最新值,不能解决指令交错

// 假设i的初始值为0 
getstatic i // 线程2-获取静态变量i的值 线程内i=0 
getstatic i // 线程1-获取静态变量i的值 线程内i=0 
iconst_1 // 线程1-准备常量1 
iadd // 线程1-自增 线程内i=1 
putstatic i // 线程1-将修改后的值存入静态变量i 静态变量i=1 
iconst_1 // 线程2-准备常量1 
isub // 线程2-自减 线程内i=-1 
putstatic i // 线程2-将修改后的值存入静态变量i 静态变量i=-1 

注意

synchronized 语句块既可以保证代码块的原子性,也同时保证代码块内变量的可见性。但缺点是 synchronized 是属于重量级操作,性能相对更低 。

JMM关于synchronized的两条规定:

  • 线程解锁前,必须把共享变量的最新值刷新到主内存中>
  • 线程加锁时,将清空工作内存中共享变量的值,从而使用共享变量时需要从主内存中重新获取最新的值

注意:加锁与解锁需要是同一把锁

通过以上两点,可以看到synchronized能够实现可见性。同时,由于synchronized具有同步锁,所以它也具有原子性

如果在前面引例的死循环中加入 System.out.println() 会发现即使不加 volatile 修饰符,线程 t 也能正确看到 对 run 变量的修改了,因为println方法中有synchronized代码块保证了可见性:

public void println(String x) {
		//使用了synchronized关键字
        synchronized (this) {
            print(x);
            newLine();
        }
    }

synchronized关键字不能阻止指令重排,但在一定程度上能保证有序性(如果共享变量没有逃逸出同步代码块的话)。因为在单线程的情况下指令重排不影响结果,相当于保障了有序性。

两阶终止模式优化

利用volatile修饰的停止标记

// 停止标记用 volatile 是为了保证该变量在多个线程之间的可见性
// 我们的例子中,即主线程把它修改为 true 对 t1 线程可见
class TPTVolatile {
    private Thread thread;
    private volatile boolean stop = false;
    public void start(){
        thread = new Thread(() -> {
            while(true) {
                Thread current = Thread.currentThread();
                if(stop) {
                    log.debug("料理后事");
                    break;
                }
                try {
                    Thread.sleep(1000);
                    log.debug("将结果保存");
                } catch (InterruptedException e) {
                     }
                // 执行监控操作
            }
        },"监控线程");
        thread.start();
    }
    public void stop() {
        stop = true;
        //让线程立即停止而不是等待sleep结束
        thread.interrupt();
    }
}

调用

TPTVolatile t = new TPTVolatile();
t.start();
Thread.sleep(3500);
log.debug("stop");
t.stop();

结果

11:54:52.003 c.TPTVolatile [监控线程] - 将结果保存
11:54:53.006 c.TPTVolatile [监控线程] - 将结果保存
11:54:54.007 c.TPTVolatile [监控线程] - 将结果保存
11:54:54.502 c.TestTwoPhaseTermination [main] - stop 
11:54:54.502 c.TPTVolatile [监控线程] - 料理后事

Balking模式

Balking (犹豫)模式用在一个线程发现另一个线程或本线程已经做了某一件相同的事,那么本线程就无需再做 了,直接结束返回

  • 用一个标记来判断该任务是否已经被执行过了
  • 需要避免线程安全问题
    • 加锁的代码块要尽量的小,以保证性能

实现示例:

public class MonitorService {
    // 用来表示是否已经有线程已经在执行启动了
    private volatile boolean starting;
    public void start() {
        log.info("尝试启动监控线程...");
        synchronized (this) {
            if (starting) {
                return;
            }
            starting = true;
        }
		//其实synchronized外面还可以再套一层if,或者改为if(!starting),if框后直接return
        // 真正启动监控线程...
    }
}

当前端页面多次点击按钮调用 start 时

输出

[http-nio-8080-exec-1] cn.itcast.monitor.service.MonitorService - 该监控线程已启动?(false)
[http-nio-8080-exec-1] cn.itcast.monitor.service.MonitorService - 监控线程已启动...
[http-nio-8080-exec-2] cn.itcast.monitor.service.MonitorService - 该监控线程已启动?(true)
[http-nio-8080-exec-3] cn.itcast.monitor.service.MonitorService - 该监控线程已启动?(true)
[http-nio-8080-exec-4] cn.itcast.monitor.service.MonitorService - 该监控线程已启动?(true)

它还经常用来实现线程安全的单例

public final class Singleton {
    
    private Singleton() {
    }
    
    private static Singleton INSTANCE = null;
    
    public static synchronized Singleton getInstance() {
        if (INSTANCE != null) {
            return INSTANCE;
        }
        INSTANCE = new Singleton();
        return INSTANCE;
    }
}

对比一下保护性暂停模式:保护性暂停模式用在一个线程等待另一个线程的执行结果,当条件不满足时线程等待。

有序性

JVM 会在不影响正确性的前提下,可以调整语句的执行顺序,思考下面一段代码:

static int i;
static int j;
// 在某个线程内执行如下赋值操作
i = ...; 
j = ...; 

可以看到,至于是先执行 i 还是 先执行 j ,对最终的结果不会产生影响。所以,上面代码真正执行时,既可以是

i = ...; 
j = ...;

也可以是

j = ...;
i = ...; 

这种特性称之为『指令重排』,多线程下『指令重排』会影响正确性。为什么要有重排指令这项优化呢?从 CPU 执行指令的原理来理解一下吧

指令重排序优化

事实上,现代处理器会设计为一个时钟周期完成一条执行时间最长的 CPU 指令。为什么这么做呢?可以想到指令还可以再划分成一个个更小的阶段,例如,每条指令都可以分为: 取指令 - 指令译码 - 执行指令 - 内存访问 - 数据写回 这 5 个阶段

在这里插入图片描述

在不改变程序结果的前提下,这些指令的各个阶段可以通过重排序组合来实现指令级并行。

指令重排的前提是,重排指令不能影响结果,例如

// 可以重排的例子
int a = 10; // 指令1
int b = 20; // 指令2
System.out.println( a + b );
// 不能重排的例子
int a = 10; // 指令1
int b = a - 5; // 指令2

支持流水线的处理器

现代 CPU 支持多级指令流水线,例如支持同时执行 取指令 - 指令译码 - 执行指令 - 内存访问 - 数据写回 的处理器,就可以称之为五级指令流水线。这时 CPU 可以在一个时钟周期内,同时运行五条指令的不同阶段(相当于一 条执行时间最长的复杂指令),本质上,流水线技术并不能缩短单条指令的执行时间,但它变相地提高了 指令地吞吐率

提示

奔腾四(Pentium 4)支持高达 35 级流水线,但由于功耗太高被废弃

在这里插入图片描述

Java层面展示

int num = 0;
boolean ready = false;
// 线程1 执行此方法
public void actor1(I_Result r) {
    if(ready) {
        r.r1 = num + num;
    } else {
        r.r1 = 1;
    }
}
// 线程2 执行此方法
public void actor2(I_Result r) { 
    num = 2;
    ready = true; 
}

I_Result 是一个对象,有一个属性 r1 用来保存结果,问,可能的结果有几种?

一般来说有两种结果,r1等于1或4

但其实结果还有可能为0

这种情况下是:线程2中的num = 2ready = true指令被交换了位置而导致其先执行了ready = true,切换到线程1,进入 if 分支,相加为 0,再切回线程2 执行 num = 2

这种现象叫做指令重排,是 JIT 编译器在运行时的一些优化,这个现象需要通过大量测试才能复现(千万级别)

借助 java 并发压测工具 jcstress :https://wiki.openjdk.java.net/display/CodeTools/jcstress

我们的解决方法就是:把ready变量使用volatile修饰

volatile 修饰的变量,可以禁用指令重排

  • 禁止的是加volatile关键字变量之前的代码被重排序

内存屏障

  • 可见性
    • 写屏障(sfence)保证在该屏障之前的,对共享变量的改动,都同步到主存当中
    • 读屏障(lfence)保证在该屏障之后,对共享变量的读取,加载的是主存中新数据
  • 有序性
    • 写屏障会确保指令重排序时,不会将写屏障之前的代码排在写屏障之后
    • 读屏障会确保指令重排序时,不会将读屏障之后的代码排在读屏障之前

volatile的原理

volatile 的底层实现原理是内存屏障,Memory Barrier(Memory Fence)

  • 对 volatile 变量的写指令后会加入写屏障
  • 对 volatile 变量的读指令前会加入读屏障

如何保证可见性

写屏障(sfence)保证在该屏障之前的,对共享变量的改动,都同步到主存当中

  public void actor2(I_Result r) {
      num = 2;
      ready = true; // ready 是 volatile 赋值带写屏障
      // 写屏障
  }

而读屏障(lfence)保证在该屏障之后,对共享变量的读取,加载的是主存中最新数据

  public void actor1(I_Result r) {
      // 读屏障
      // ready 是 volatile 读取值带读屏障
      if(ready) {
          r.r1 = num + num;
      } else {
          r.r1 = 1;
      }
  }

在这里插入图片描述

如何保证有序性

写屏障会确保指令重排序时,不会将写屏障之前的代码排在写屏障之后

 public void actor2(I_Result r) {
     num = 2;
     ready = true; // ready 是 volatile 赋值带写屏障
     // 写屏障
 }

读屏障会确保指令重排序时,不会将读屏障之后的代码排在读屏障之前

 public void actor1(I_Result r) {
     // 读屏障
     // ready 是 volatile 读取值带读屏障
     if(ready) {
         r.r1 = num + num;
     } else {
         r.r1 = 1;
     }
 }

在这里插入图片描述

还是那句话,不能解决指令交错

  • 写屏障仅仅是保证之后的读能够读到最新的结果,但不能保证读跑到它前面去
  • 而有序性的保证也只是保证了本线程内相关代码不被重排序

在这里插入图片描述

double-checked locking 问题

以著名的 double-checked locking 单例模式为例

public final class Singleton {
    private Singleton() { }
    private static Singleton INSTANCE = null;
    public static Singleton getInstance() { 
        if(INSTANCE == null) { // t2
            // 首次访问会同步,而之后的使用没有 synchronized
            synchronized(Singleton.class) {
                if (INSTANCE == null) { // t1
                    INSTANCE = new Singleton();
                } 
            }
        }
        return INSTANCE;
    }
}

以上的实现特点是:

  • 懒惰实例化
  • 首次使用 getInstance() 才使用 synchronized 加锁,后续使用时无需加锁
  • 有隐含的,但很关键的一点:第一个 if 使用了 INSTANCE 变量,是在同步块之外

但在多线程环境下,上面的代码是有问题的,getInstance 方法对应的字节码为:

0: getstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton;
3: ifnonnull 37
6: ldc #3 // class cn/itcast/n5/Singleton
8: dup
9: astore_0
10: monitorenter
11: getstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton;
14: ifnonnull 27
17: new #3 // class cn/itcast/n5/Singleton
20: dup
21: invokespecial #4 // Method "<init>":()V
24: putstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton;
27: aload_0
28: monitorexit
29: goto 37
32: astore_1
33: aload_0
34: monitorexit
35: aload_1
36: athrow
37: getstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton;
40: areturn

其中

  • 17 表示创建对象,将对象引用入栈 // new Singleton
  • 20 表示复制一份对象引用 // 引用地址
  • 21 表示利用一个对象引用,调用构造方法
  • 24 表示利用一个对象引用,赋值给 static INSTANCE

也许 jvm 会优化为:先执行 24,再执行 21。如果两个线程 t1,t2 按如下时间序列执行:

在这里插入图片描述

关键在于 0: getstatic 这行代码在 monitor 控制之外,它就像之前举例中不守规则的人,可以越过 monitor 读取 INSTANCE 变量的值

这时 t1 还未完全将构造方法执行完毕,如果在构造方法中要执行很多初始化操作,那么 t2 拿到的是将是一个未初 始化完毕的单例

对 INSTANCE 使用 volatile 修饰即可,可以禁用指令重排,但要注意在 JDK 5 以上的版本的 volatile 才会真正有效

double-checked locking 解决

public final class Singleton {
    private Singleton() { }
    private static volatile Singleton INSTANCE = null;
    public static Singleton getInstance() {
        // 实例没创建,才会进入内部的 synchronized代码块
        if (INSTANCE == null) { 
            synchronized (Singleton.class) { // t2
                // 也许有其它线程已经创建实例,所以再判断一次
                if (INSTANCE == null) { // t1
                    INSTANCE = new Singleton();
                }
            }
        }
        return INSTANCE;
    }
}

字节码上看不出来 volatile 指令的效果

// -------------------------------------> 加入对 INSTANCE 变量的读屏障
0: getstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton;
3: ifnonnull 37
6: ldc #3 // class cn/itcast/n5/Singleton
8: dup
9: astore_0
10: monitorenter -----------------------> 保证原子性、可见性
11: getstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton;
14: ifnonnull 27
17: new #3 // class cn/itcast/n5/Singleton
20: dup
21: invokespecial #4 // Method "<init>":()V
24: putstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton;
// -------------------------------------> 加入对 INSTANCE 变量的写屏障
27: aload_0
28: monitorexit ------------------------> 保证原子性、可见性
29: goto 37
32: astore_1
33: aload_0
34: monitorexit
35: aload_1
36: athrow
37: getstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton;
40: areturn

如上面的注释内容所示,读写 volatile 变量时会加入内存屏障(Memory Barrier(Memory Fence)),保证下面 两点:

  • 可见性
    • 写屏障(sfence)保证在该屏障之前的 t1 对共享变量的改动,都同步到主存当中
    • 而读屏障(lfence)保证在该屏障之后 t2 对共享变量的读取,加载的是主存中最新数据
  • 有序性
    • 写屏障会确保指令重排序时,不会将写屏障之前的代码排在写屏障之后
    • 读屏障会确保指令重排序时,不会将读屏障之后的代码排在读屏障之前
  • 更底层是读写变量时使用 lock 指令来多核 CPU 之间的可见性与有序性

在这里插入图片描述

happens-before

happens-before 规定了对共享变量的写操作对其它线程的读操作可见,它是可见性与有序性的一套规则总结,抛开以下 happens-before 规则,JMM 并不能保证一个线程对共享变量的写,对于其它线程对该共享变量的读可见

下面说的变量都是指成员变量或静态成员变量

  • 线程解锁 m 之前对变量的写,对于接下来对 m 加锁的其它线程对该变量的读可见(synchronized关键字的可见性、监视器规则)

    static int x;
    static Object m = new Object();
    new Thread(()->{
        synchronized(m) {
            x = 10;
        }
    },"t1").start();
    new Thread(()->{
        synchronized(m) {
            System.out.println(x);
        }
    },"t2").start();
    
  • 线程对 volatile 变量的写,对接下来其它线程对该变量的读可见(volatile关键字的可见性、volatile规则)

    volatile static int x;
    new Thread(()->{
        x = 10;
    },"t1").start();
    new Thread(()->{
        System.out.println(x);
    },"t2").start();
    
  • 线程 start 前对变量的写,对该线程开始后对该变量的读可见(程序顺序规则+线程启动规则)

    static int x;
    x = 10;
    new Thread(()->{
        System.out.println(x);
    },"t2").start();
    
  • 线程结束前对变量的写,对其它线程得知它结束后的读可见(比如其它线程调用 t1.isAlive() 或 t1.join()等待 它结束)(线程终止规则)

    static int x;
    Thread t1 = new Thread(()->{
        x = 10;
    },"t1");
    t1.start();
    t1.join();
    System.out.println(x);
    
  • 线程 t1 打断 t2(interrupt)前对变量的写,对于其他线程得知 t2 被打断后对变量的读可见(通过 t2.interrupted 或 t2.isInterrupted)(线程中断机制)

    static int x;
    public static void main(String[] args) {
        Thread t2 = new Thread(()->{
            while(true) {
                if(Thread.currentThread().isInterrupted()) {
                    System.out.println(x);
                    break;
                }
            }
        },"t2");
        t2.start();
        new Thread(()->{
            sleep(1);
            x = 10;
            t2.interrupt();
        },"t1").start();
        while(!t2.isInterrupted()) {
            Thread.yield();
        }
        System.out.println(x);
    }
    
  • 对变量默认值(0,false,null)的写,对其它线程对该变量的读可见

  • 具有传递性,如果 x hb-> y 并且 y hb-> z 那么有 x hb-> z ,配合 volatile 的防指令重排,有下面的例子

    volatile static int x;
    static int y;
    new Thread(()->{ 
        y = 10;
        x = 20;
    },"t1").start();
    new Thread(()->{
        // x=20 对 t2 可见, 同时 y=10 也对 t2 可见
        System.out.println(x); 
    },"t2").start();
    

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/121957.html

(0)
飞熊的头像飞熊bm

相关推荐

发表回复

登录后才能评论
极客之音——专业性很强的中文编程技术网站,欢迎收藏到浏览器,订阅我们!