文章目录
Sets and Strings
Strings
Definition 2.1. An alphabet is any collection of symbols.
字母表是任何符号的集合
Definition 2.2. Take any alphabet Σ. A string over the alphabet Σ is
any sequence of letters in an alphabet.
以任何字母Σ为例。字母Σ上的字符串是字母表中的任何字母序列。
Definition 2.3. The length of any string is the number of characters
in that string.
任何字符串的长度都是字符的数量
换句话说,当且仅当两个字符串字面上的字符对字符完全相同时,它们是相等的!注意,两个长度不同的字符串总是不相等的。
Definition 2.6. Let s and t be strings. We say that s is a prefix of t
if t is just s with some additional stuff possibly tacked on the end: i.e. if
we can find a third string u such that su = t.
Similarly, we say that s is a suffix of t if t is just s with some additional
stuff possibly tacked on the front: i.e. if we can find a third string u such
that us = t.
Finally, we say that s is a substring (alternately, an “infix”) of t if t
is just s with some stuff possibly tacked on both the front and end: i.e.
if we can find strings u, v such that usv = t.
让s和t是字符串。我们说s是t的前缀.如果t只是s最后加上一些额外的东西,我们可以找到第三个字符串u,使得su = t。
类似地,如果t只是s加上一些可能附加在前面的东西:例如,如果我们能找到第三个字符串u,使us = t。我们说s是t的后缀,
最后,如果t只是s,可能在前端和末端都附加了一些东西:如果我们能找到字符串u, v,使usv = t。我们说s是t的子串(或者说是“中缀”).
Claim 2.1. The empty string λ is a prefix, suffix, and substring of every
string t.
空字符串λ是每个字符串t的前缀、后缀和子字符串。
Claim 2.2. If s is a prefix of t, then s is a substring of t.
如果s是t的前缀,那么s是t的子串
Sets
Definition 2.7. A set A is just a collection of things. We call those
things the elements of A, and write x ∈ A to denote with symbols the
statement “x is an element of A.”
To describe a set, we just list its elements between a pair of curly braces:
for example, {1, 2, 3} would be how we would describe the set consisting
of the three numbers 1, 2 and 3.
集合A就是一些东西的集合。我们
将x∈A表示为A的元素
” x是a的一个元素”
要描述一个集合,只需在一对花括号之间列出它的元素:例如,{1,2,3}是描述由数字1,2和3组成的集合的方式。
Definition 2.8. A set A has size n if it contains precisely n different
elements. If A contains infinitely many different elements, we say that
A has “infinite” size. We denote the size of A by writing ∣A∣.
如果它恰好包含n个不同的元素,集合A的大小为n。如果A包含无限多个不同的元素,我们说A的大小是“无限”的。我们通过写∣A∣来表示A的大小。
Definition 2.9. Take two sets A, B We say that B is a subset of A,
and write B ⊆ A, if every object in B is also an object in A.
取两个集合A和B,如果B中的每个对象也是A中的一个对象,我们说B是A的子集,写作B⊆A。
Definition 2.10. Let A, B be a pair of sets. We define the union of
these two sets, A ∪ B, to be the collection of all elements that are in
either A or B or both.
设A, B是一对集合。定义这两个集合的并集:
A∪B,是其中所有元素的集合,不是A就是B,或者两者都有。
Definition 2.11. Let A, B be a pair of sets. We define the intersection
of these two sets, A ∩ B, to be the collection of all elements that are in
both A and B at the same time.
设A, B是一对集合。我们定义在这两个集合中交集:
A∩B,是所有A和B中的元素同 时出现的集合。
Definition 2.12. Let A, B be a pair of sets. We define the difference
of these two sets, written A∖B or alternately A−B, to be the collection
of all elements that are both in A and not in B at the same time.
设A, B是一对集合。我们定义差集,写成A∖B或写成A – B,作为所有同时在A但不在B中的元素集合。
Definition 2.13. We say that two sets A, B are equal if they both
consist of the same elements; that is, if
• Every element in A is a element in B, and
• Every element in B is also a element in A.
我们说集合A和集合B相等,如果它们都相等
相同的:由相同的元素组成的;也就是说,如果
•A中的每个元素都是B中的一个元素,并且
•B中的每个元素在a中也是一个元素。
Claim 2.3. Let A, B be any two sets such that A ⊆ B. Then A∪B = B.
设A, B为A⊆B的任意两个集合,则A∪B = B
Claim 2.4. Let A, B be any two sets. Then (A ∖ B) ∖ A = ∅.
设A B是任意两个集合。则(A∖B)∖A =∅。
Claim 2.5. If A, B, C are three sets, then A∖(B∪C) = (A∖B)∩(A∖C).
如果A、B、C是三个集合,则A∖(B∪C) = (A∖B)∩(A∖C)。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/122199.html