算法设计与分析复习07:样题

追求适度,才能走向成功;人在顶峰,迈步就是下坡;身在低谷,抬足既是登高;弦,绷得太紧会断;人,思虑过度会疯;水至清无鱼,人至真无友,山至高无树;适度,不是中庸,而是一种明智的生活态度。

导读:本篇文章讲解 算法设计与分析复习07:样题,希望对大家有帮助,欢迎收藏,转发!站点地址:www.bmabk.com,来源:原文

作者:非妃是公主
专栏:《算法》
个性签:顺境不惰,逆境不馁,以心制境,万事可成。——曾国藩

在这里插入图片描述

专栏系列文章

算法设计与分析复习01:主方法求递归算法时间复杂度

算法设计与分析复习02:分而治之算法

算法设计与分析复习03:动态规划算法
算法设计与分析复习04:贪心算法

算法设计与分析复习05:回溯及分支限界

算法设计与分析复习06:随机化算法

算法设计与分析复习07:样题

复习重点

在这里插入图片描述

样题

单选题:

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

简答题

在这里插入图片描述

回溯法的求解目标是找出T中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解。

由于求解目标不同,导致分支限界法与回溯法在解空间树T上的搜索方式也不相同。回溯法以深度优先的方式搜索解空间树T,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树T。

分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。问题的解空间树是表示问题解空间的一棵有序树,常见的有子集树和排列树。在搜索问题的解空间树时,分支限界法与回溯法对当前扩展结点所使用的扩展方式不同。在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,那些导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被子加入活结点表中。此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程一直持续到找到所求的解或活结点表为空时为止。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/130511.html

(0)
飞熊的头像飞熊bm

相关推荐

发表回复

登录后才能评论
极客之音——专业性很强的中文编程技术网站,欢迎收藏到浏览器,订阅我们!