Hadoop之计算框架Tez的基本使用

生活中,最使人疲惫的往往不是道路的遥远,而是心中的郁闷;最使人痛苦的往往不是生活的不幸,而是希望的破灭;最使人颓废的往往不是前途的坎坷,而是自信的丧失;最使人绝望的往往不是挫折的打击,而是心灵的死亡。所以我们要有自己的梦想,让梦想的星光指引着我们走出落漠,走出惆怅,带着我们走进自己的理想。

导读:本篇文章讲解 Hadoop之计算框架Tez的基本使用,希望对大家有帮助,欢迎收藏,转发!站点地址:www.bmabk.com,来源:原文

Tez概述

官网:https://tez.apache.org/

Tez是支持DAG作业的开源计算框架,它可以将多个有依赖的作业转换为一个作业从而大幅提升DAG 作业的性能。

Tez源于MapReduce框架,核心思想是将Map和Reduce两个操作进一步拆分,即Map被拆分成Input、Processor、Sort、Merge和Output, Reduce被拆分成Input、Shuffle、Sort、Merge、Processor和Output等,这样,这些分解后的元操作可以灵活组合,产生新的操作,这些操作经过一些控制程序组装后,可形成一个大的DAG作业。

两个组成部分:

1.数据处理管道引擎,其中一个引擎可以插入输入,处理和输出实现以执行任意数据处理

2.数据处理应用程序的主机,通过它可以将上述任意数据处理“任务”组合到任务 DAG 中,以根据需要处理数据。

Tez运行过程:
在这里插入图片描述在这里插入图片描述

通过允许诸如Apache Hive和Apache Pig之类的项目运行复杂的 DAG(运行计算的有向无环图)任务,Tez 可以用于处理数据,该数据以前需要执行多个MR作业,而现在在单个Tez作业中

第一个图表展示的流程包含多个MR任务,每个任务都将中间结果存储到HDFS上——前一个步骤中的reducer为下一个步骤中的mapper提供数据。第二个图表展示了使用Tez时的流程,仅在一个任务中就能完成同样的处理过程,任务之间不需要访问HDFS。

Tez编译

Tez编译是为了与Hadoop版本保持一致。

Tea各版本:https://tez.apache.org/releases/

下载Tez源码

wget https://dlcdn.apache.org/tez/0.10.1/apache-tez-0.10.1-src.tar.gz

修改pom.xml

解压、重命名

tar -zxvf apache-tez-0.10.1-src.tar.gz 

mv apache-tez-0.10.1-src tez

在pom.xml中更改hadoop.version属性值,以匹配所使用的hadoop版本

cd tez

<hadoop.version>3.1.3</hadoop.version>

注意pom.xml中guava的版本,使用Hadoop使用的版本

ll hadoop/share/hadoop/common/lib/guava*

-rw-r--r-- 1 root root 2747878 May 12 22:48 hadoop/share/hadoop/common/lib/guava-27.0-jre.jar

<guava.version>27.0-jre</guava.version>

注释模块
tez-ui这个模块和tez-ext-service-tests模块是耗时耗力不讨好,而且没啥用,所以我们可以直接跳过

<!--
<module>tez-ext-service-tests</module>
<module>tez-ui</module>
-->

开始编译

安装编译工具

yum -y install autoconf automake libtool cmake ncurses-devel openssl-devel lzo-devel zlib-devel gcc gcc-c++

开始编译Tez

mvn clean package -DskipTests=true -Dmaven.javadoc.skip=true

Tez与Hadoop

上传Tez到HDFS

直接使用其二进制包来安装

wget https://dlcdn.apache.org/tez/0.10.1/apache-tez-0.10.1-bin.tar.gz

将tez/share目录中的tez.tar.gz压缩包上传到HDFS的Tez目录中

hadoop fs -mkdir -p /tez

cd /usr/local/program/tez/share

hadoop fs -put tez.tar.gz  /tez

hadoop fs -chmod -R 777 /tez

创建配置文件tez-site.xml

在Hadoop配置目录创建配置文件tez-site.xml:vim hadoop/etc/hadoop/tez-site.xml

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
 <!-- 指向hdfs上的tez.tar.gz包 -->
 <property>
  <name>tez.lib.uris</name>
  <value>${fs.defaultFS}/tez/tez.tar.gz</value>
 </property>
<property>
     <name>tez.use.cluster.hadoop-libs</name>
     <value>true</value>
</property>
<property>
     <name>tez.am.resource.memory.mb</name>
     <value>2048</value>
</property>
<property>
     <name>tez.am.resource.cpu.vcores</name>
     <value>1</value>
</property>
<property>
     <name>tez.container.max.java.heap.fraction</name>
     <value>0.4</value>
</property>
<property>
     <name>tez.task.resource.memory.mb</name>
     <value>1024</value>
</property>
<property>
     <name>tez.task.resource.cpu.vcores</name>
     <value>1</value>
</property>
</configuration>

更多配置

Tez参数配置:https://tez.apache.org/releases/0.10.1/tez-api-javadocs/configs/TezConfiguration.html

Tez运行时参数配置:https://tez.apache.org/releases/0.10.1/tez-runtime-library-javadocs/configs/TezRuntimeConfiguration.html

配置环境变量

把Tez中所有jar包添加到HADOOP_CLASSPATH
vim /usr/local/program/hadoop/etc/hadoop/hadoop_env.sh

TEZ_CONF_DIR=$HADOOP_HOME/etc/hadoop/tez-site.xml
TEZ_JARS=/usr/local/program/tez
export HADOOP_CLASSPATH=${HADOOP_CLASSPATH}:${TEZ_CONF_DIR}:${TEZ_JARS}/*:${TEZ_JARS}/lib/*

修改mapred-site.xml 文件

<property>
   <name>mapreduce.framework.name</name>
   <value>yarn-tez</value>
</property>

修改之后将mapred-site.xml和hadoop_env.sh,tez-site.xml文件同步到集群所有的节点上

Tez和Hadoop的兼容

tez的lib目录中的hadoop包的版本和实际安装的hadoop版本可能不一定一致,如果不一致则需要将其jar删除与替换

cd tez

rm -rf lib/hadoop-mapreduce-client-core-*.jar lib/hadoop-mapreduce-client-common-*.jar

cp /usr/local/program/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-common-core-*.jar ./

cp /usr/local/program/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-core-*.jar ./

作业测试

hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /input /output

[root@administrator hadoop]# hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar  wordcount /input /output
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/program/hadoop/share/hadoop/common/lib/slf4j-log4j12-1.7.30.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/local/program/tez/lib/slf4j-log4j12-1.7.30.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2022-05-16 09:55:59,529 INFO client.RMProxy: Connecting to ResourceManager at administrator/172.22.4.21:8032
2022-05-16 09:56:00,674 INFO mapreduce.JobResourceUploader: Disabling Erasure Coding for path: /tmp/hadoop-yarn/staging/root/.staging/job_1652665777479_0003
2022-05-16 09:56:00,914 INFO sasl.SaslDataTransferClient: SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2022-05-16 09:56:01,225 INFO input.FileInputFormat: Total input files to process : 0
2022-05-16 09:56:01,285 INFO sasl.SaslDataTransferClient: SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2022-05-16 09:56:01,737 INFO sasl.SaslDataTransferClient: SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2022-05-16 09:56:01,769 INFO mapreduce.JobSubmitter: number of splits:0
2022-05-16 09:56:01,975 INFO sasl.SaslDataTransferClient: SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2022-05-16 09:56:02,054 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1652665777479_0003
2022-05-16 09:56:02,054 INFO mapreduce.JobSubmitter: Executing with tokens: []
2022-05-16 09:56:02,451 INFO client.YARNRunner: Number of stages: 2
2022-05-16 09:56:02,530 INFO sasl.SaslDataTransferClient: SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2022-05-16 09:56:02,621 INFO conf.Configuration: resource-types.xml not found
2022-05-16 09:56:02,622 INFO resource.ResourceUtils: Unable to find 'resource-types.xml'.
2022-05-16 09:56:02,992 INFO counters.Limits: Counter limits initialized with parameters:  GROUP_NAME_MAX=256, MAX_GROUPS=500, COUNTER_NAME_MAX=64, MAX_COUNTERS=1200
2022-05-16 09:56:02,992 INFO counters.Limits: Counter limits initialized with parameters:  GROUP_NAME_MAX=256, MAX_GROUPS=500, COUNTER_NAME_MAX=64, MAX_COUNTERS=120
2022-05-16 09:56:02,992 INFO client.TezClient: Tez Client Version: [ component=tez-api, version=0.10.1, revision=067af9f02ac8d2e9ec777f6098c861bdd5e52da0, SCM-URL=scm:git:https://gitbox.apache.org/repos/asf/tez.git, buildTime=2021-06-17T14:22:56Z, buildUser=lbodor, buildJavaVersion=1.8.0_151 ]
2022-05-16 09:56:03,012 INFO client.RMProxy: Connecting to ResourceManager at administrator/172.22.4.21:8032
2022-05-16 09:56:03,015 INFO client.TezClient: Submitting DAG application with id: application_1652665777479_0003
2022-05-16 09:56:03,018 INFO client.TezClientUtils: Using tez.lib.uris value from configuration: hdfs://administrator:9000/tez/tez.tar.gz
2022-05-16 09:56:03,018 INFO client.TezClientUtils: Using tez.lib.uris.classpath value from configuration: null
2022-05-16 09:56:03,070 INFO client.TezClient: Tez system stage directory hdfs://administrator:9000/tmp/hadoop-yarn/staging/root/.staging/job_1652665777479_0003/.tez/application_1652665777479_0003 doesn't exist and is created
2022-05-16 09:56:03,117 INFO sasl.SaslDataTransferClient: SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2022-05-16 09:56:03,648 INFO sasl.SaslDataTransferClient: SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2022-05-16 09:56:04,192 INFO sasl.SaslDataTransferClient: SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2022-05-16 09:56:04,235 INFO client.TezClient: Submitting DAG to YARN, applicationId=application_1652665777479_0003, dagName=word count
2022-05-16 09:56:04,907 INFO impl.YarnClientImpl: Submitted application application_1652665777479_0003
2022-05-16 09:56:04,921 INFO client.TezClient: The url to track the Tez AM: http://administrator:8088/proxy/application_1652665777479_0003/
2022-05-16 09:56:16,796 INFO client.RMProxy: Connecting to ResourceManager at administrator/172.22.4.21:8032
2022-05-16 09:56:17,060 INFO mapreduce.Job: The url to track the job: http://administrator:8088/proxy/application_1652665777479_0003/
2022-05-16 09:56:17,068 INFO mapreduce.Job: Running job: job_1652665777479_0003
2022-05-16 09:56:18,107 INFO mapreduce.Job: Job job_1652665777479_0003 running in uber mode : false
2022-05-16 09:56:18,110 INFO mapreduce.Job:  map 0% reduce 0%
2022-05-16 09:56:30,276 INFO mapreduce.Job:  map 0% reduce 100%
2022-05-16 09:56:30,283 INFO mapreduce.Job: Job job_1652665777479_0003 completed successfully
2022-05-16 09:56:30,303 INFO mapreduce.Job: Counters: 0

在这里插入图片描述

Tez与Hive整合

hive有三种引擎:mapreduce、spark、tez,默认引擎为MapReduce,但MapReduce的计算效率非常低,而Spark和Tez引擎效率高,公司一般会使用Spark或Tez作为hive的引擎。

拷贝Jar

将Tez目录下的所有jar包拷贝至{HIVE_HOME}/lib目录下

cd /usr/local/program/tez

scp -r *.jar /usr/local/program/hive/lib/

scp -r lib/*.jar /usr/local/program/hive/lib/

ll /usr/local/program/hive/lib/tez-*

注意:如果是集群配置Hive,需要将Tez的依赖包需要拷贝至HiveServer2和HiveMetastore服务所在节点的相应目录下

修改hive-site.xml配置文件

指定hive使用tez计算框架

<property>
    <name>hive.execution.engine</name>
    <value>tez</value>
</property>
<property>
    <name>hive.tez.container.size</name>
    <value>1024</value>
</property>

临时使用,在进入hive shell交互时使用

# 设置hive执行引擎为tez
set hive.execution.engine=tez;

# 设置tez使用内存
set hive.tez.container.size=2048;

重启Hive

nohup hive --service metastore > /dev/null 2>&1 &

nohup hiveserver2 > /dev/null 2>&1 &

netstat -apn |grep 10000
netstat -apn |grep 9083
hive


create table tb_user(id int,name string);

insert into tb_user values (1,"hive1");
insert into tb_user values (2,"hive2");
insert into tb_user values (3,"hive3");
insert into tb_user values (4,"hive4");
insert into tb_user values (5,"hive5");

SELECT * FROM tb_user;

Tez参数设置

hive使用tez执行引擎

set hive.execution.engine=tez;

Map任务分组分片的最大和最小值,最大最小都会影响性能;

//默认5010241024
set tez.grouping.min-size=256000000; 

//默认 102410241024
set tez.grouping.max-size=3221225472; 

在yarn集群中的队列名称

set tez.queue.name=root.odms;

tez引擎设置任务名称

set tez.job.name=job_dm_icsm_ts_area_manage_bdp;

mapReduce引擎设置任务名称

set mapred.job.name=job_dm_icsm_ts_area_manage_bdp;

打开Tez的 auto reducer 并行特性。启用后,配置单元仍将估计数据大小并设置并行度估计。Tez将采样源顶点的输出大小,并在运行时根据需要调整估计值。

 //默认为false
set hive.tez.auto.reducer.parallelism=true;

设置reduce的个数

set mapred.reduce.tasks =1000;

Tez优化

内存大小设置

1.设置tez AM容器内存

tez.am.resource.memory.mb 
修改配置文件:tez-site.xml

默认值:1024

建议:不小于或者等于yarn.scheduler.minimum-allocation-mb值

2.设置tez container内存

hive.tez.container.size 
修改配置文件:hive-site-xml

默认值:-1;默认情况下,Tez将生成一个mapper大小的容器

建议:不小于或者是yarn.scheduler.minimum-allocation-mb的倍数

JVM参数设置

1.设置 AM jvm,启动TEZ任务进程期间提供的命令行选项

tez.am.launch.cmd-opts
修改配置文件:tez-site.xml

默认大小:80%*tez.am.resource.memory.mb

建议:不要在这些启动选项中设置任何xmx或xms,以便tez可以自动确定它们

2.设置 container jvm

hive.tez.java.ops

修改配置文件:hive-site.xml

默认大小:80%hive.tez.container.size

说明:在hive 2.x的官方文档中没有找到这个参数

3.设置task/AM占用jvm内存大小的比例

tez.container.max.java.heap.fraction 
修改配置文件:tez-site.xml

默认值:0.8

说明:这个值按具体需要调整,当内存不足时,一般都要调小

Hive内存Map Join参数设置

1.设置输出排序内存大小

tez.runtime.io.sort.mb 
配置文件:tez-site.xml

默认值:100

建议:40%hive.tez.container.size,一般不超过2G

2.是否将多个mapjoin合并为一个

hive.auto.convert.join.noconditionaltask 
配置文件:hive-site.xml

默认值:true

建议:使用默认值

3.限制输入的表文件的大小

hive.auto.convert.join.noconditionaltask.size
配置文件:hive-site.xml

默认值:10000000 (10M)

参数使用前提是hive.auto.convert.join.noconditionaltask值为true,
多个mapjoin转换为1个时,所有小表的文件大小总和小于这个值,这个值只是限制输入的表文件的大小,
并不代表实际mapjoin时hashtable的大小

 建议值:1/3* hive.tez.container.size

4.使用的缓冲区大小

tez.runtime.unordered.output.buffer.size-mb 
配置文件:tez-site.xml

如果不直接写入磁盘,使用的缓冲区大小

默认值:100M

建议:10%* hive.tez.container.size

5.容器重用

tez.am.container.reuse.enabled 
配置文件:tez-ste.xml

默认值:true

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/136940.html

(0)
飞熊的头像飞熊bm

相关推荐

发表回复

登录后才能评论
极客之音——专业性很强的中文编程技术网站,欢迎收藏到浏览器,订阅我们!