Go分布式爬虫笔记(二十三)

生活中,最使人疲惫的往往不是道路的遥远,而是心中的郁闷;最使人痛苦的往往不是生活的不幸,而是希望的破灭;最使人颓废的往往不是前途的坎坷,而是自信的丧失;最使人绝望的往往不是挫折的打击,而是心灵的死亡。所以我们要有自己的梦想,让梦想的星光指引着我们走出落漠,走出惆怅,带着我们走进自己的理想。

导读:本篇文章讲解 Go分布式爬虫笔记(二十三),希望对大家有帮助,欢迎收藏,转发!站点地址:www.bmabk.com,来源:原文

23 规则引擎

问题分析

之前,我们在查找租房信息时,已经实现了有一定扩展性的程序。通过在每一个请求中加入 ParseFunc 函数,可以实现灵活的请求规则。

// 单个请求
type Request struct {
  unique    string
  Task      *Task
  Url       string
  Method    string
  Depth     int
  Priority  int
  ParseFunc func([]byte, *Request) ParseResult
}

但是仍然有一些问题

  • 一个爬虫任务会针对不同的网站有不同的处理规则,但现在的处理方式导致多个规则之间是割裂的,不便于统一管理。
  • 我们在添加初始爬虫网站 URL 时,这些种子任务是在 main 函数中注入进去的,与任务的规则之间是割裂的。但是我们需要将初始爬虫 URL 与处理规则进行统一的管理。
    种子任务与任务规则是割裂
  • 当前的爬虫任务还是需要手动初始化才能运行,可配置化程度比较低。我们希望这些写好的静态任务在程序初始化时能够自动加载。而通过外部接口,或者只要在配置文件中指定一个任务名就能将任务调度起来。
    静态任务自动加载,通过接口或者配置文件调度任务
  • 更进一步,我们当前的任务和规则都是静态的,静态指的是代码需要提前写好,重新编译运行才能够在运行中被调用。我们能否动态地增加任务和任务的规则,让程序能够动态地解析我们的规则呢?
    规则和任务都是静态的

静态规则引擎

静态规则处理的确定性强,它适合对性能要求高的爬虫任务。我们可以把一个任务的规则抽象如下:

type RuleTree struct {
  Root  func() []*Request // 根节点(执行入口)
  Trunk map[string]*Rule  // 规则哈希表 存储当前任务所有的规则
}

// 采集规则节点
type Rule struct {
  ParseFunc func(*Context) ParseResult // 内容解析函数
}

//当前的请求参数以及要解析的内容字节数组。后续还会添加请求中的临时数据等上下文数据。
type Context struct {
  Body []byte
  Req  *Request
}

下面我们沿用之前爬取租房信息的例子,将处理规则替换为使用新的静态规则引擎。

step1 定义任务与规则

我们在 Task 中加入了 Name 字段,将其作为一个任务唯一的标识。Task 里除了之前具有的最大深度、等待时间等属性,我们还加入了Rule, 规则条件中 Root 生成了初始化的爬虫任务。Trunk 为爬虫任务中的所有规则。

// 一个任务实例,
type Task struct {
	Name        string // 用户界面显示的名称(应保证唯一性)
	Url         string
	Cookie      string
	WaitTime    time.Duration
	Reload      bool // 网站是否可以重复爬取
	MaxDepth    int
	Visited     map[string]bool
	VisitedLock sync.Mutex
	Fetcher     Fetcher
	Rule        RuleTree // 规则树
}

var DoubangroupTask = &collect.Task{
  Name:     "find_douban_sun_room",
  WaitTime: 1 * time.Second,
  MaxDepth: 5,
  Cookie:  "xxx",
  Rule: collect.RuleTree{
    Root: func() []*collect.Request {
      var roots []*collect.Request
      for i := 0; i < 25; i += 25 {
        str := fmt.Sprintf("<https://www.douban.com/group/szsh/discussion?start=%d>", i)
        roots = append(roots, &collect.Request{
          Priority: 1,
          Url:      str,
          Method:   "GET",
          RuleName: "解析网站URL",
        })
      }
      return roots
    },
    Trunk: map[string]*collect.Rule{
      "解析网站URL": &collect.Rule{ParseURL},
      "解析阳台房":   &collect.Rule{GetSunRoom},
    },
  },
}

当前任务规则包括了“解析网站 URL” 和“解析阳台房” 这两个规则,分别对应了处理函数 ParseURL 和 GetSunRoom,如下所示。


const urlListRe = `(<https://www.douban.com/group/topic/[0-9a-z]+/>)"[^>]*>([^<]+)</a>`
const ContentRe = `<div class="topic-content">[\s\S]*?阳台[\s\S]*?<div class="aside">`

func ParseURL(ctx *collect.Context) collect.ParseResult {
  re := regexp.MustCompile(urlListRe)

  matches := re.FindAllSubmatch(ctx.Body, -1)
  result := collect.ParseResult{}

  for _, m := range matches {
    u := string(m[1])
    result.Requesrts = append(
      result.Requesrts, &collect.Request{
        Method:   "GET",
        Task:     ctx.Req.Task,
        Url:      u,
        Depth:    ctx.Req.Depth + 1,
        RuleName: "解析阳台房",
      })
  }
  return result
}

func GetSunRoom(ctx *collect.Context) collect.ParseResult {
  re := regexp.MustCompile(ContentRe)

  ok := re.Match(ctx.Body)
  if !ok {
    return collect.ParseResult{
      Items: []interface{}{},
    }
  }
  result := collect.ParseResult{
    Items: []interface{}{ctx.Req.Url},
  }
  return result
}

step2 初始化任务与规则

在 engine/schedule.go 文件中,init 函数中的 Store.Add 函数将任务加载到全局的任务队列中。在 Go 中,init 函数是一个特殊的函数,它会在 main 函数之前自动执行。注意,当添加的任务越来越多之后,代码会变得臃肿,这不是一种优雅的写法。后面我们还会优化它。

// engine/schedule.go
func init() {
  Store.Add(doubangroup.DoubangroupTask)
}

func (c *CrawlerStore) Add(task *collect.Task) {
  c.hash[task.Name] = task
  c.list = append(c.list, task)
}

// 全局爬虫任务实例
var Store = &CrawlerStore{
  list: []*collect.Task{},
  hash: map[string]*collect.Task{},
}

type CrawlerStore struct {
  list []*collect.Task
  hash map[string]*collect.Task
}

step3 启动任务

启动爬虫任务的方式可以分为两种,一种是加载配置文件,另一种是在调用用户接口时,传递任务名称和参数。不过在这里我们先用硬编码的形式来实现。而通过配置文件和用户接口来操作任务的方式我们会有专门的课程来实现。

func main(){
  ...
  seeds = append(seeds, &collect.Task{
      Name:    "find_douban_sun_room",
      Fetcher: f,
    })
  s := engine.NewEngine(
      engine.WithFetcher(f),
      engine.WithLogger(logger),
      engine.WithWorkCount(5),
      engine.WithSeeds(seeds),
      engine.WithScheduler(engine.NewSchedule()),
    )
    s.Run()
}

step4 加载任务

在调度器启动时,通过 task.Rule.Root() 获取初始化任务,并加入到任务队列中。


func (e *Crawler) Schedule() {
  var reqs []*collect.Request
  for _, seed := range e.Seeds {
    task := Store.hash[seed.Name]
    // 获取初始化任务
    rootreqs := task.Rule.Root()
    reqs = append(reqs, rootreqs...)
  }
  go e.scheduler.Schedule()
  go e.scheduler.Push(reqs...)
}

在 Worker 处理请求时,需要从 Rule.Trunk 中获取当前请求的解析规则,并将内容和请求包装到 Context 中,调用 ParseFunc 对内容进行解析。


func (s *Crawler) CreateWork() {
  for {
     ...
     //获取当前任务对应的规则
    rule := req.Task.Rule.Trunk[req.RuleName]
    // 内容解析
    result := rule.ParseFunc(&collect.Context{
      body,
      req,
    })
  // 新的任务加入队列中
    if len(result.Requesrts) > 0 {
      go s.scheduler.Push(result.Requesrts...)
    }
  }
}

动态规则引擎

像 Javascript、Python、Lua 这样的动态语言与 Go 有显著不同,它们不需要提前进行编译,能够比较灵活地书写并执行动态的规则。这一功能依赖于一种语言解释器,这种解释器一般是静态的语言编写的,例如 C/C++,解释器会解析这些动态语言的语法,然后执行相应规则。

一家人工智能企业的核心产品之一是对视频流进行人脸识别。完成视频中人脸的解析涉及到视频的解码、 人脸的识别、人脸的矫正、特征的提取等多个阶段。这整个过程被称为一个 pipeline。pipeline 中的每一个阶段可能是串行的也可能是并行的。在过去,人脸、人群、物体的识别都需要单独来开发,这样开发的周期比较长,也缺乏灵活性。

为了应对未来灵活多变的检测需求,例如监测人是否摔倒,工人是否佩戴安全帽等,我们需要更短的开发周期,需要用更灵活的方式把这些阶段串联起来。这时这家公司就在 Go 中使用了 Lua 虚拟机。开发者遇到一个新的长尾需求时,通过书写 Lua 脚本来定义新的规则。在 Go 程序中通过动态加载 Lua 脚本来实现灵活性。

我们现在的爬虫项目其实也面邻着一样的问题。网站和规则是多种多样的,我们无法穷尽所有的规则,如果每次遇到新网站都要重新写代码,写爬取规则然后重启程序,这会比较繁琐,所以我们希望能够动态地在程序运行过程中加载规则。

动态规则带来的另一个好处是,降低了书写代码规则的门槛,它甚至可以让业务人员也能书写简单的规则。说到在爬虫项目中实现动态规则的引擎,我们首先想到的就是使用 Javascript 虚拟机了。因为使用 JS 操作网页有天然的优势。

自己要在短时间内实现一个工业级的虚拟机可能比较困难,我们可以使用一些开源的项目,例如otto。otto 是用 Go 编写的 JavaScript 虚拟机,用于在 Go 中执行 Javascript 语法。

下面是用 otto 编写的一个简单的例子。在这个例子中,script 字符串即为要执行的 Javascript 语法,console.log 是 JS 中的函数,用于打印变量。


package main

import (
  "fmt"
  "github.com/robertkrimen/otto"
)

func main() {
  vm := otto.New()
  script := `
    var n = 100;
    console.log("hello-" + n);   
    n;
  `
  value, _ := vm.Run(script)
  fmt.Println("value:", value.String()) 
}
// output
hello-100
value: 100

这样,我们就实现了在 Go 语言中执行 JS 脚本的目的。实际上,otto 内部解析了这一串字符串,并按照 JS 语法中对应的规则进行了相应的处理,例如脚本中的 console.log 函数最终其实也调用了 Go 中的 fmt 函数,实现将文本打印到控制台。不过我们要注意的是,不一定 JS 的所有语法 JS 虚拟机都是支持的,是否支持取决于当前虚拟机的实现。例如当前 otto 支持 JS5 语法,但是不支持 JS6 语法。

step1 构建动态规则模型TaskModle

type (
  TaskModle struct {
    Name     string        `json:"name"` // 任务名称,应保证唯一性
    Url      string        `json:"url"`
    Cookie   string        `json:"cookie"`
    WaitTime time.Duration `json:"wait_time"`
    Reload   bool          `json:"reload"` // 网站是否可以重复爬取
    MaxDepth int64         `json:"max_depth"`
    Root  string           `json:"root_script"`
    Rules []RuleModle      `json:"rule"`
  }
  RuleModle struct {
    Name      string `json:"name"`
    ParseFunc string `json:"parse_script"`
  }
)

为什么这里要单独构建一个任务的结构体呢?主要原因在于,现在我们的规则都是字符串了,这和之前的静态规则引擎有本质的不同。其中,TaskModle.Root 为初始化种子节点的 JS 脚本,TaskModle.Rules 为具体爬虫任务的规则树。

step2 动态爬虫规则

示例代码如下。其中,Root 脚本就是我们要生成的种子网站 URL。在这里我们构建了一个 JS 数组 arr,将生成的请求数组添加到 arr 之后,又调用了 AddJsReq 函数。AddJsReq 函数其实是一个 Go 函数,用于最终生成 Go 中的请求数组。在这里我们可以看到,在 Go 的 JS 虚拟机中,还可以灵活地调用原生的 Go 函数。

var DoubangroupJSTask = &collect.TaskModle{
  Property: collect.Property{
    Name:     "js_find_douban_sun_room",
    WaitTime: 1 * time.Second,
    MaxDepth: 5,
    Cookie:   "xxx",
  },
  Root: `
    var arr = new Array();
     for (var i = 25; i <= 25; i+=25) {
      var obj = {
         Url: "<https://www.douban.com/group/szsh/discussion?start=>" + i,
         Priority: 1,
         RuleName: "解析网站URL",
         Method: "GET",
       };
      arr.push(obj);
    };
    console.log(arr[0].Url);
    AddJsReq(arr);
      `,
  Rules: []collect.RuleModle{
    {
      Name: "解析网站URL",
      ParseFunc: `
      ctx.ParseJSReg("解析阳台房","(<https://www.douban.com/group/topic/[0-9a-z]+/>)\\"[^>]*>([^<]+)</a>");
      `,
    },
    {
      Name: "解析阳台房",
      ParseFunc: `
      //console.log("parse output");
      ctx.OutputJS("<div class=\\"topic-content\\">[\\\\s\\\\S]*?阳台[\\\\s\\\\S]*?<div class=\\"aside\\">");
      `,
    },
  },
}

而在 Rules 脚本中,我们加入了两个爬虫规则,分别是“解析网站 URL”和 “解析阳台房”,他们都可以使用非常简单的规则来实现。在这里我们调用了 ctx.ParseJSReg 来解析请求,调用了 ctx.OutputJS 来解析并输出找到的内容,注意这里的 ctx.ParseJSReg 与 ctx.OutputJS 也是 Go 原生的函数,下面我们会看到他们的实现。

step3 动态规则中的 Go 函数。

AddJsReqs 函数将在 JS 脚本中的请求数据变为 Go 结构中的数组[]*collect.Request,而 ctx.ParseJSReg 方法则会动态解析 JS 中传递的正则表达式并生成新的请求, ctx.OutputJS 负责解析传递过来的正则表达式并完成结果的输出。注意 JS 虚拟机会自动将 JS 脚本中的参数转换为函数参数中对应的结构。

// 用于动态规则添加请求。
func AddJsReqs(jreqs []map[string]interface{}) []*collect.Request {
  reqs := make([]*collect.Request, 0)

  for _, jreq := range jreqs {
    req := &collect.Request{}
    u, ok := jreq["Url"].(string)
    if !ok {
      return nil
    }
    req.Url = u
    req.RuleName, _ = jreq["RuleName"].(string)
    req.Method, _ = jreq["Method"].(string)
    req.Priority, _ = jreq["Priority"].(int64)
    reqs = append(reqs, req)
  }
  return reqs
}

// 动态解析JS中的正则表达式
func (c *Context) ParseJSReg(name string, reg string) ParseResult {
  re := regexp.MustCompile(reg)

  matches := re.FindAllSubmatch(c.Body, -1)
  result := ParseResult{}

  for _, m := range matches {
    u := string(m[1])
    result.Requesrts = append(
      result.Requesrts, &Request{
        Method:   "GET",
        Task:     c.Req.Task,
        Url:      u,
        Depth:    c.Req.Depth + 1,
        RuleName: name,
      })
  }
  return result
}

// 解析内容并输出结果
func (c *Context) OutputJS(reg string) ParseResult {
  re := regexp.MustCompile(reg)
  ok := re.Match(c.Body)
  if !ok {
    return ParseResult{
      Items: []interface{}{},
    }
  }
  result := ParseResult{
    Items: []interface{}{c.Req.Url},
  }
  return result
}

step4 初始化任务与规则

初始化动态规则这一步更复杂一些,因为我们需要将 JS 脚本放入 paesrFunc 函数中,供 otto 库解析,代码如下所示。

func init() {
    ...
  Store.AddJSTask(doubangroup.DoubangroupJSTask)
}

func (c *CrawlerStore) AddJSTask(m *collect.TaskModle) {
  task := &collect.Task{
    Property: m.Property,
  }

  task.Rule.Root = func() ([]*collect.Request, error) {
    vm := otto.New()
    vm.Set("AddJsReq", AddJsReqs)
    v, err := vm.Eval(m.Root)
    e, err := v.Export()
    return e.([]*collect.Request), nil
  }

  for _, r := range m.Rules {
    paesrFunc := func(parse string) func(ctx *collect.Context) (collect.ParseResult, error) {
      return func(ctx *collect.Context) (collect.ParseResult, error) {
        vm := otto.New()
        vm.Set("ctx", ctx)
        v, err := vm.Eval(parse)
        e, err := v.Export()
        return e.(collect.ParseResult), err
      }
    }(r.ParseFunc)
    if task.Rule.Trunk == nil {
      task.Rule.Trunk = make(map[string]*collect.Rule, 0)
    }
    task.Rule.Trunk[r.Name] = &collect.Rule{
      paesrFunc,
    }
  }

  c.hash[task.Name] = task
  c.list = append(c.list, task)
}

在这里,用于生成种子网站的 Root 函数中的 vm.Eval(m.Root) 执行了配置中的 root 脚本,然后返回了生成的请求数组。vm.Set(“AddJsReq”, AddJsReqs) 可以将 Go 原生函数注册到 JS 虚拟机中,这样我们才能在 JS 脚本中调用 Go 函数。paesrFunc 函数也是一样,在这里我们使用了闭包,方便后续执行 parse 脚本并最后返回解析后的 collect.ParseResult 结果。

step5 启动并加载任务

启动任务和加载任务与静态规则引擎代码完全一致,完全复用就可以了。到这里,我们只需要指定一个任务名 js_find_douban_sun_room 就可以利用动态规则引擎将爬虫任务跑起来了。


func main(){
  ...
  seeds = append(seeds, &collect.Task{
      Property: collect.Property{
        Name: "js_find_douban_sun_room",
      },
      Fetcher: f,
    })
  
    s := engine.NewEngine(
      engine.WithFetcher(f),
      engine.WithLogger(logger),
      engine.WithWorkCount(5),
      engine.WithSeeds(seeds),
      engine.WithScheduler(engine.NewSchedule()),
    )
  
    s.Run()
}

「此文章为4月Day7学习笔记,内容来源于极客时间《Go分布式爬虫实战》,强烈推荐该课程!/推荐该课程」

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/137581.html

(0)
飞熊的头像飞熊bm

相关推荐

发表回复

登录后才能评论
极客之音——专业性很强的中文编程技术网站,欢迎收藏到浏览器,订阅我们!