Java新特性–Stream的全部用法整理

有时候,不是因为你没有能力,也不是因为你缺少勇气,只是因为你付出的努力还太少,所以,成功便不会走向你。而你所需要做的,就是坚定你的梦想,你的目标,你的未来,然后以不达目的誓不罢休的那股劲,去付出你的努力,成功就会慢慢向你靠近。

导读:本篇文章讲解 Java新特性–Stream的全部用法整理,希望对大家有帮助,欢迎收藏,转发!站点地址:www.bmabk.com,来源:原文

一、流

Java 8 API添加了一个新的抽象称为流Stream,将要处理的元素集合看作一种流, 流在管道中传输,能够对每个元素进行一系列并行或串行的流水线操作

在这里插入图片描述

  • 数据源可以是集合,数组,I/O channel, 产生器generato…
  • 数据源如:List<T> 的集合转换为 Stream<T> 类型的流,然后进行中间操作如过滤、排序、遍历、类型转换
  • 终端可以选择将 Stream 流转换回一个新类型的集合中,如果中间对每个元素操作后,你的目的已达到,最后转不转回都行
  • 很多中间操作的方法返回类型就是Stream,因此可以直接连起来,如操作List<Person> list
    在这里插入图片描述
  • 流的操作不会改变原集合,除非用原集合接,即list = list.stream().xxx…
  • stream() − 为集合创建串行流
  • parallelStream() − 为集合创建并行流

二、常用方法

数据源:

List<String> stringList = Arrays.asList("abc", "", "bc", "efg", "abcd","", "jkl");

public class Person{
	String name;
	Integer age;
}

List<Person> list = new ArrayList<>();
list.add(new Person("Jack",23));
list.add(new Person("Jack",23));
list.add(new Person("Tom",30));

1、filter(element -> boolean表达式)

作用:

  • 过滤元素,符合Boolean表达式的留下来

示例:

//过滤,只要空字符串
NewList<String> list = stringList.stream()
								 .filter(param -> param.isEmpty())
								 .collect(Collectors.toList());

2、distinct()

作用:

  • 去除重复元素
  • 这个方法是通过类的 equals 方法来判断两个元素是否相等

示例:


list = list.stream()
			.distinct().collect(Collectors.toList());

这里不重写Person类的equals方法,两个数据不会被处理

3、sorted() / sorted((T, T) -> int)

作用:

  • 对流中的元素进行排序
  • 若流中元素的类实现了Comparable接口,即有自己的排序规则,此时可直接sorted()
  • 否则,用sorted((T,T) -> int)说明排序规则

示例:

根据年龄大小来比较:
list = list.stream()
           .sorted((p1, p2) -> p1.getAge() - p2.getAge())
           .collect(Collectors.toList());

以上可优化为:

list = list.stream()
           .sorted(Comparator.comparingInt(Person::getAge))
           .collect(Collectors.toList());

4、limit(long n)

作用:

  • 返回前n个元素

示例:

list = list.stream()
            .limit(1)
            .collect(Collectors.toList());

5、skip(long n)

作用:

  • 去除前n个元素
  • limit(m).skip(n),先返回前m个元素,再从这m个元素中去除n个
  • skip(n).limit(m),先去除n个元素,再返回剩余的前m个

示例:

list = list.stream()
            .limit(2)
            .skip(1)
            .collect(Collectors.toList());
//即先拿前两个,再去掉这两个中的第一个

6、map(T -> R)

作用:

  • 将流中的每一个元素映射为R

示例:

List<Integer> list = new ArrayList<>();
        list.add(1);
        list.add(2);
        list.add(3); 
list = list.stream().map(i -> i + 2).collect(Collectors.toList());

list.forEach(System.out::println);
//输出3、4、5

除了处理基本数据类型,也可修改对象,但最后记得return element;

list = list.stream()
            .map(p -> {p.setAge(p.getAge() + 1);
            			p.setName(p.getName().equals("Tom")? "TomCat" : "Cat");
            			return p;})
            .collect(Collectors.toList());

//对每个对象的属性进行定制操作

也可映射抽出对象的一部分属性,收集到一个新类型的集合中:

List<String> newlist = list.stream()
							.map(Person::getName)
							.collect(Collectors.toList());
List<Integer> newlist = list.stream()
							.map(p -> p.getAge())
							.collect(Collectors.toList());

map方法接受一个lambda表达式,这个表达式是一个函数,输入类型是集合元素的类型, 输出类型是任意类型 , 即你可以选择将元素映射为任意类型, 并对映射后的值做下一步处理.

it -> Integer.toString(it)

7、faltMap(T -> Stream)

当处理的是一个List<Person>,此时使用map方法,拿到的元素是一个个Person对象。当处理的是一个List<List<Person>>,此时使用map,拿到的是一个个list集合,此时想对每一个Person对象操作,就得用faltMap,flat,平铺的意思 .
在这里插入图片描述
这个图很清晰的说明了flatMap的使用场景—流中的元素自身也是一个流(集合 . 数组)

常用写法:

  • xx.stream().flatMap(t -> t.stream()).xxx
  • 等价于 xx.stream().flatMap(Collection::stream).xx

举例:

List<Person> list1 = new ArrayList<>();
List<Person> list2 = new ArrayList<>();
list1.add(new Person("A",23));
list1.add(new Person("B",23));
list2.add(new Person("C",23));
list2.add(new Person("D",23));
List<List<Person>> listPlus = new ArrayList<>();
listPlus.add(list1);
listPlus.add(list2);
List<String> nameList = listPlus.stream()
								.flatMap(t -> t.stream()) //此时流中元素为Person对象
								.map(t -> t.getName())
								.distinct()
								.collect(Collectors.toList());
//A B C D

8、anyMatch(T -> boolean表达式)

作用:

  • 流中是否有元素满足这个Boolean表达式

举例:

是否存在一个 person 对象的 age 等于 20boolean b = list.stream().anyMatch(person -> person.getAge() == 20);

9、allMatch(T -> boolean)和noneMatch(T -> boolean)

作用:

  • allMatch(T -> boolean)即流中所有元素是否都满足Boolean条件
  • noneMatch(T -> boolean)即是否流中没有一个元素满足Boolean表达式

10、count()

作用:

  • 返回流中元素的个数,返回Long型

11、reduce((T, T) -> T) / reduce(T, (T, T) -> T)

作用:

  • 组合流中的元素,进行求数学运算值
  • 价格使用BigDecimal防止精度损失
计算年龄总和:
int sum = list.stream().map(Person::getAge).reduce(0, (a, b) -> a + b);
与之相同:
int sum = list.stream().map(Person::getAge).reduce(0, Integer::sum);
 
BigDecimal计算,将所有商品的价格累加
BigDecimal totalPrice = goodList.stream().map(GoodsCode::getPrice()).reduce(BigDecimal.ZERO, BigDecimal::add);

示例:

12、forEach()

普通for循环或者增强for循环,break跳出整个循环,continue跳出本次循环。stream()的forEach则不同:

  • 处理集合时不能使用break和continue中止循环
  • 可以使用关键字return跳出本次循环,并执行下一次遍历
  • 不能跳出整个流的forEach循环
//打印各个元素

list.stream().forEach(System.out::println);

也可对每个元素进行想要的操作:

list.stream().forEach(element -> {
			java语句1;
			java语句2}

);

13、Stream.iterate

作用:
指定一个常量seed,生成从seed到常量f(由UnaryOperator返回的值得到)的流。


Stream.iterate(0, n -> n + 1).limit(5).forEach(a -> {
    System.out.println(a);
});


以上:根据起始值seed(0),每次生成一个指定递增值(n+1)的数,limit(5)用于截断流的长度,即只获取前5个元素

输出:
0
1
2
3
4

三、收集方法collect()详解

作用:

  • 收集流中元素的方法,传参是一个收集器接口, 常用写法:
  • .collect(Collectors.toList())收集到list集合
  • .collect(Collectors.toMap(x,x,x))收集到map集合
  • .collect(Collectors.groupingBy(xx))分组
  • .collect(Collectors.counting())统计集合总数
  • .collect(joining())连接字符串

1、.collect(Collectors.toMap(x,x,x))

Map<String,Person> newMap = lst.stream()
							.collect(Collectors.toMap(p -> p.getName(), p -> p, (p1,p2) -> p1));


各个参数的意义:

  • 第一个参数 p -> p.getName()即使用name做为Map集合的key
  • p -> p.getName()可以写成Person::getName
  • 第二个参数 p -> p即将原来的对象做为map的value值,当然也可以Person::getAge继续用属性做value
  • 第三个参数(p1,p2) -> p1即若p1、p2的key相同,则取p1的value

2、.collect(Collectors.groupingBy(xx))

作用: 将处理后的元素进行分组,得到一个Map集合

/数据准备
@Data
@AllArgsConstructor
public class Books {

    private Integer id;

    private Integer num;

    private String name;

    private Double price;

    private String category;
}

Books book1 = new Books(1,100,"Java入门",60.0,"互联网类") ;
Books book2 = new Books(2,200,"Linux私房菜",100.0,"互联网类") ;
Books book3 = new Books(3,200,"Docker进阶",70.0,"互联网类") ;
Books book4 = new Books(4,600,"平凡的世界",200.0,"小说类") ;
Books book5 = new Books(5,1000,"白鹿原",190.0,"小说类") ;
List<Books> booksList = Lists.newArrayList(book1,book2,book3,book4,book5);

  • case1: 按照某个属性分组, 即以该属性为Map集合的key,把这个属性相同的对象放在一个List集合中做为value
//按照category分类
Map<String,List<Books>> map = booksList.stream()
                .collect(Collectors.groupingBy(Books::getCategory));

//run
{
互联网类=[Books(id=1, num=100, name=Java入门, price=60.0, category=互联网类), Books(id=2, num=200, name=Linux私房菜, price=100.0, category=互联网类), Books(id=3, num=200, name=Docker进阶, price=70.0, category=互联网类)], 
小说类=[Books(id=4, num=600, name=平凡的世界, price=200.0, category=小说类), Books(id=5, num=1000, name=白鹿原, price=190.0, category=小说类)]
}
  • case2: 按照某几个属性拼接分组
Map<String,List<Books>> map = booksList.stream()
                .collect(Collectors.groupingBy(t -> t.getCategory() +"_" + t.getName()));

//run
{
互联网类_Linux私房菜=[Books(id=2, num=200, name=Linux私房菜, price=100.0, category=互联网类)], 
小说类_平凡的世界=[Books(id=4, num=600, name=平凡的世界, price=200.0, category=小说类)],
互联网类_Docker进阶=[Books(id=3, num=200, name=Docker进阶, price=70.0, category=互联网类)], 
互联网类_Java入门=[Books(id=1, num=100, name=Java入门, price=60.0, category=互联网类)], 
小说类_白鹿原=[Books(id=5, num=1000, name=白鹿原, price=190.0, category=小说类)]
}
  • case3: 按照不同的条件分组
//不同条件下,使用不同的key
Map<String,List<Books>> map = booksList.stream()
						                .collect(Collectors.groupingBy(t -> {
						                    if(t.getNum() > 500){
						                        return "数量充足";
						                    }else{
						                        return "数量较少";
						                    }
						                }));

//run

{
数量充足=[Books(id=4, num=600, name=平凡的世界, price=200.0, category=小说类), Books(id=5, num=1000, name=白鹿原, price=190.0, category=小说类)], 
数量较少=[Books(id=1, num=100, name=Java入门, price=60.0, category=互联网类), Books(id=2, num=200, name=Linux私房菜, price=100.0, category=互联网类), Books(id=3, num=200, name=Docker进阶, price=70.0, category=互联网类)]
}
  • case4: 实现多级分组, 即由双参数版本的Collectors.groupingBy,对由第一个参数分类后的结果, 再进行分类,此时结果类型Map<String,Map<String,List<Books>>>
//接case3,想先按照类别分组,再给每个组按照数量再分一次
Map<String,Map<String,List<Books>>> map = booksList.stream()
									                .collect(Collectors.groupingBy(t -> t.getCategory(), Collectors.groupingBy( t -> {
									                    if(t.getNum() > 100){
									                        return "数量充足";
									                    }else{
									                        return "数量较少";
									                    }
									                })));

//run
{
互联网类={数量充足=[Books(id=2, num=200, name=Linux私房菜, price=100.0, category=互联网类), Books(id=3, num=200, name=Docker进阶, price=70.0, category=互联网类)], 数量较少=[Books(id=1, num=100, name=Java入门, price=60.0, category=互联网类)]}, 
小说类={数量充足=[Books(id=4, num=600, name=平凡的世界, price=200.0, category=小说类), Books(id=5, num=1000, name=白鹿原, price=190.0, category=小说类)]}
}
  • case5: 分组后,统计每个分组中元素的个数, Map集合的value类型为long型
Map<String,Long> map = booksList.stream()
                .collect(Collectors.groupingBy(Books::getCategory,Collectors.counting()));

//run
{互联网类=3, 小说类=2}
  • case6: 分组后,统计每个分组中元素的某属性的总和
Map<String,Integer> map = booksList.stream()
                .collect(Collectors.groupingBy(Books::getCategory,Collectors.summingInt(Books::getNum)));

//run
{互联网类=500, 小说类=1600}
  • case7: 加比较器取某属性最值
Map<String,Books> map3 = booksList.stream()
                .collect(Collectors.groupingBy(Books::getCategory, Collectors.collectingAndThen(Collectors.maxBy(Comparator.comparingInt(Books::getNum)), Optional::get)));

//run
{互联网类=Books(id=2, num=200, name=Linux私房菜, price=100.0, category=互联网类), 小说类=Books(id=5, num=1000, name=白鹿原, price=190.0, category=小说类)}
  • case8:联合其他收集器
Map<String, Set<String>> map2 = booksList.stream()
                .collect(Collectors.groupingBy(Books::getCategory,Collectors.mapping(t->t.getName(),Collectors.toSet())));

//run

{互联网类=[Linux私房菜, Docker进阶, Java入门], 小说类=[平凡的世界, 白鹿原]}        

3 、.collect(joining())

作用:

  • 拼接收集到的元素
  • 传参为拼接时的连接符
String s = list.stream().map(Person::getName)
						.collect(joining());
 
结果:jackmiketom
String s = list.stream().map(Person::getName)
						.collect(joining(","));
 
结果:jack,mike,tom

四、并行流parallelStream

stream是串行的流式计算, parallelStream是并行的流式计算.

在这里插入图片描述
使用并行流遍历打印一个集合元素,并输出当前线程,可以看到线程抬头是ForkJoinPool.且遍历输出的元素是无序的

1、ForkJoin框架

  • ForkJoin框架是java7中提供的并行执行框架
  • 它的策略是分而治之。即将一个大任务拆分为若干互不依赖的子任务,把这些子任务分别放到不同的队列里,并为每个队列创建一个单独的线程来执行队列里的任务
    在这里插入图片描述
  • 为了最大限度地提高并行处理能力,采用了 工作窃取算法 来运行任务,也就是说当某个线程处理完自己工作队列中的任务后,尝试当其他线程的工作队列中窃取一个任务来执行,直到所有任务处理完毕。(类比自己的任务做完了, 帮同事分一点任务,以求最早完成总任务)
  • 为了减少线程之间的竞争,通常会使用双端队列,被窃取任务线程永远从双端队列的头部拿任务执行,而窃取任务的线程永远从双端队列的尾部拿任务执行
    在这里插入图片描述

2、parallelStream

  • 调用ParallelStream() 和 Stream() 方法, 返回的都是一个流, 对forEach
  • 并行流的创建可以xx.parallelStream()或者xx.stream().parallel()
  • 并行流内部使用了默认的ForkJoinPool
  • parallelStream默认的并发线程数比CPU处理器的数量少1个(最优的策略是每个CPU处理器分配一个线程,然而主线程也算一个线程)
// 获取当前机器CPU处理器的数量
System.out.println(Runtime.getRuntime().availableProcessors());// 输出 6
// parallelStream默认的并发线程数
System.out.println(ForkJoinPool.getCommonPoolParallelism());// 输出 5
// 设置全局并行流并发线程数
//这是全局配置,会影响所有的并行流
System.setProperty("java.util.concurrent.ForkJoinPool.common.parallelism", "3");
  • parallelStream是线程不安全的
    在这里插入图片描述

  • 并发并不一定就能提高性能, CPU资源不足, 存在频繁的线程切换反而会降低性能

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/146070.html

(0)
飞熊的头像飞熊bm

相关推荐

发表回复

登录后才能评论
极客之音——专业性很强的中文编程技术网站,欢迎收藏到浏览器,订阅我们!