使用cifar10数据集和alexnet网络模型训练分类模型
下载cifar10数据集
代码:
import torchvision
import torch
transform = torchvision.transforms.Compose(
[torchvision.transforms.ToTensor(),
torchvision.transforms.Resize(224)]
)
train_set = torchvision.datasets.CIFAR10(root='./',download=False,train=True,transform=transform)
test_set = torchvision.datasets.CIFAR10(root='./',download=False,train=False,transform=transform)
train_loader = torch.utils.data.DataLoader(train_set,batch_size=8,shuffle=True)
test_loader = torch.utils.data.DataLoader(test_set,batch_size=8,shuffle=True)
class Alexnet(torch.nn.Module): #1080 2080
def __init__(self,num_classes=10):
super(Alexnet,self).__init__()
net = torchvision.models.alexnet(pretrained=False) #迁移学习
net.classifier = torch.nn.Sequential()
self.features = net
self.classifier = torch.nn.Sequential(
torch.nn.Dropout(0.3),
torch.nn.Linear(256 * 6 * 6, 4096),
torch.nn.ReLU(inplace=True),
torch.nn.Dropout(0.3),
torch.nn.Linear(4096, 4096),
torch.nn.ReLU(inplace=True),
torch.nn.Linear(4096, num_classes),
)
def forward(self,x):
x = self.features(x)
x = x.view(x.size(0),-1)
x = self.classifier(x)
return x
device = torch.device('cpu')
net = Alexnet().to(device)
loss_func = torch.nn.CrossEntropyLoss().to(device)
optim = torch.optim.Adam(net.parameters(),lr=0.001)
net.train()
for epoch in range(10):
for step,(x,y) in enumerate(train_loader): # 28*28*1 32*32*3
x,y = x.to(device),y.to(device)
output = net(x)
loss = loss_func(output,y)
optim.zero_grad()
loss.backward()
optim.step()
print("epoch:",epoch,'loss:',loss)
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/147414.html