机器学习之算法案例公共自行车使用量预测

有时候,不是因为你没有能力,也不是因为你缺少勇气,只是因为你付出的努力还太少,所以,成功便不会走向你。而你所需要做的,就是坚定你的梦想,你的目标,你的未来,然后以不达目的誓不罢休的那股劲,去付出你的努力,成功就会慢慢向你靠近。

导读:本篇文章讲解 机器学习之算法案例公共自行车使用量预测,希望对大家有帮助,欢迎收藏,转发!站点地址:www.bmabk.com,来源:原文

公共自行车使用量预测

公共自行车低碳、环保、健康,并且解决了交通中“最后一公里”的
痛点,在全国各个城市越来越受欢迎。本练习赛的数据取自于两个城市某
街道上的几处公共自行车停车桩。我们希望根据时间、天气等信息,预测
出该街区在一小时内的被借取的公共自行车的数量。
train.csv 训练集,文件大小 273kb
test.csv 预测集, 文件大小 179kb

公共自行车使用量预测
训练集中共有10000条样本,预测集中有7000条样本。
在这里插入图片描述

代码实现

import numpy as np
import pandas as pd
from sklearn.preprocessing import  StandardScaler
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error,r2_score
train = pd.read_csv('train.csv')  #读取数据
test = pd.read_csv('test.csv')
train = train.drop('id',axis=1)  #删除无关的数据 id列
test  = test.drop('id',axis=1)

train_x = train.iloc[:,train.columns != 'y']  #从数据集中取出训练的x
train_y = train.iloc[:,train.columns == 'y'] #从数据集中取出训练的y
train_y = np.array(train_y).flatten()  #将y展平

std = StandardScaler()  #对数据进行标准化
train_x = std.fit_transform(train_x)
test_x = std.transform(test)

svr = SVR()   #选择模型
svr.fit(train_x,train_y) #训练

ms = mean_squared_error(svr.predict(train_x),train_y) #进行模型评估
print("在训练集上的均方误差是:",ms)
r2 = r2_score(svr.predict(train_x),train_y)
print("在训练集上的r2值是:",r2)

test_y = svr.predict(test_x) #在测试集上对数据进行预测
print(test_y)

结果

在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/147421.html

(0)
飞熊的头像飞熊bm

相关推荐

发表回复

登录后才能评论
极客之音——专业性很强的中文编程技术网站,欢迎收藏到浏览器,订阅我们!