Qt中Label扩展功能

得意时要看淡,失意时要看开。不论得意失意,切莫大意;不论成功失败,切莫止步。志得意满时,需要的是淡然,给自己留一条退路;失意落魄时,需要的是泰然,给自己觅一条出路Qt中Label扩展功能,希望对大家有帮助,欢迎收藏,转发!站点地址:www.bmabk.com,来源:原文

1.绘制方框
2.删除方框
3.显示图片
4.调整亮度,对比度,反色
5.放大,缩小
6.鼠标移入,移出
7.位置映射
8.鼠标按压,释放,移动事件

import copy
from PyQt5.QtGui import QPixmap
from PyQt5.QtCore import *
from PyQt5.QtGui import *
from PyQt5.QtWidgets import *
import cv2
import numpy as np

AREA_SIZE = 240
MAX_EXPAND = 4
bodyParam_dool_list_opt = [[121, 79], [121, 211], [80, 131], [159, 127]]


class ExpandLabel(QLabel):
    change_judge_num = pyqtSignal(int)
    dool_line = pyqtSignal(list)
    rm_dool_line = pyqtSignal(list)
    change_judgetimes_num = pyqtSignal()
    change_signal_pic_mode = pyqtSignal(int)
    dool_line_warning = pyqtSignal(list)
    change_automatic_alarm_num = pyqtSignal(list)
    change_dool_box_line = pyqtSignal(list)
    single_automatic_alarms_num = pyqtSignal()
    achive_most_num = pyqtSignal()

    def __init__(self):
        super().__init__()
        # 人像框
        self.data = []
        # 自动报警框
        self.data2 = []

        self.data3 = []
        # 方框颜色(黄)
        self.data_color = []
        # 移动数据 左上角和右下角两个点
        self.move_data = None
        # 鼠标释放点坐标
        self.x0 = 0
        self.y0 = 0
        # 鼠标释放点坐标
        self.x1 = 0
        self.y1 = 0
        # 鼠标位置 在框内的
        self.x2 = 0
        self.y2 = 0
        # 鼠标移动过程中坐标点
        self.now_x = 0
        self.now_y = 0
        # 画框结束,结束为False ,画框过程中为True
        self.flag = False
        # 控制放大缩小,默认状态不放大 0
        self.mode = 0
        self.single = 1
        # 图片放大倍率
        self.expend_num = MAX_EXPAND
        # 反色
        self.flag2 = 0
        # 亮度
        self.light = 0
        # 对比度
        self.contrast = 1
        # 右边显示的数字
        self.contrast_num = 0
        self.light_num = 0
        self.img2 = None
        # 拉框次数
        self.judge_num = 0
        # 鼠标移入、移出label中,记录鼠标状态
        self.enter_mouse = self.mode

        self.setMouseTracking(True)
        self.pixmap = QPixmap()
        self.mypixmap = QPixmap()

        # 头、胯,左肩、右肩位置,从上位机返回的数据中读取到的计算出的中心点
        self.head = []
        self.crotch = []
        self.l_shoulder = []
        self.r_shoulder = []
        # 存储上位机返回的所有数据
        self.json_opt = None
        # 中间方框点坐标
        self.center_pos = []
        # 人偶图对应的头、胯,左肩、右肩位置坐标,微调提高精度拉框对应
        self.doll_calculate_point = [[121, 79], [100, 264], [76, 117], [156, 115]]
        # 放在此处,便于调试使用,应该放在主控图片发送过来时解析人像中人体位置信息,获取比例,并计算人偶图对应的中心点坐标
        # self.process_data()
        self.alarmParam_front = []
        self.alarmParam_back = []

        self.img = None

        self.x = None
        self.y = None
        self.w = None
        self.h = None

    def set_img_black(self, img):
        '''
        设置黑色图片显示在label上
            1.页面初始化时加载
            2.没有图片,或者一张图判图完成后加载
        Args:
            img_src:

        Returns:

        '''
        self.img = cv2.imread(img, cv2.COLOR_BGR2GRAY)
        self.img = cv2.cvtColor(self.img, cv2.COLOR_BGR2GRAY)
        if self.img is not None:
            showImage = QImage(self.img.data, self.img.shape[1], self.img.shape[0],
                               QImage.Format_Indexed8)
            self.setPixmap(QPixmap.fromImage(showImage))
        else:
            self.update()

    def set_img_human(self, img_data):
        '''
        设置前部人像图显示
            接收到图片后加载
            带马赛克功能 self.do_mosaic(x, y, w, h, neighbor=5)
        Args:
            img_data:

        Returns:

        '''
        img_decode = cv2.imdecode(img_data, 1)
        self.img = cv2.cvtColor(img_decode, cv2.COLOR_BGR2GRAY)
        x, y, w, h = self.x, self.y, self.w, self.h
        self.img = self.do_mosaic(x, y, w, h, neighbor=5)
        if self.img is not None:
            showImage = QImage(self.img.data, self.img.shape[1], self.img.shape[0],
                               QImage.Format_Indexed8)
            self.setPixmap(QPixmap.fromImage(showImage))
        else:
            self.update()

    def set_img_human_back(self, img_data):
        '''
        设置背部人像图显示
            接收到图片后加载,没有马赛克功能
        Args:
            img_data:

        Returns:

        '''
        img_decode = cv2.imdecode(img_data, 1)
        self.img = cv2.cvtColor(img_decode, cv2.COLOR_BGR2GRAY)
        if self.img is not None:
            showImage = QImage(self.img.data, self.img.shape[1], self.img.shape[0],
                               QImage.Format_Indexed8)
            self.setPixmap(QPixmap.fromImage(showImage))
        else:
            self.update()

    def do_mosaic(self, x, y, w, h, neighbor=5):
        """
        马赛克的实现原理是把图像上某个像素点一定范围邻域内的所有点用邻域内左上像素点的颜色代替,这样可以模糊细节,但是可以保留大体的轮廓。
        :param frame: opencv frame
        :param int x : 马赛克左顶点x
        :param int y: 马赛克左顶点y
        :param int w: 马赛克宽
        :param int h: 马赛克高
        :param int neighbor: 马赛克每一块的宽
        """
        frame = self.img
        fh, fw = frame.shape[0], frame.shape[1]
        if (y + h > fh) or (x + w > fw):
            return
        for i in range(0, h - neighbor, neighbor):  # 关键点0 减去neightbour 防止溢出
            for j in range(0, w - neighbor, neighbor):
                rect = [j + x, i + y, neighbor, neighbor]
                color = frame[i + y][j + x].tolist()  # 关键点1 tolist
                left_up = (rect[0], rect[1])
                right_down = (rect[0] + neighbor - 1, rect[1] + neighbor - 1)  # 关键点2 减去一个像素
                cv2.rectangle(frame, left_up, right_down, color, -1)

        return frame

    def changeBloack(self):
        '''
        反色
        Args:
            img_src:

        Returns:

        '''
        if self.img2 is not None:
            if self.flag2 == 1:
                self.changeBloack_changeimg_status()
                self.flag2 = 0
            else:
                self.changeBloack_changeimg_status()
                self.flag2 = 1
        else:
            self.img = 255 - self.img
            showImage = QImage(self.img.data, self.img.shape[1]

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/156930.html

(0)
飞熊的头像飞熊bm

相关推荐

发表回复

登录后才能评论
极客之音——专业性很强的中文编程技术网站,欢迎收藏到浏览器,订阅我们!