前馈神经网络

不管现实多么惨不忍睹,都要持之以恒地相信,这只是黎明前短暂的黑暗而已。不要惶恐眼前的难关迈不过去,不要担心此刻的付出没有回报,别再花时间等待天降好运。真诚做人,努力做事!你想要的,岁月都会给你。前馈神经网络,希望对大家有帮助,欢迎收藏,转发!站点地址:www.bmabk.com,来源:原文

目录

全连接BP神经网络

网络结构

开始训练

梯度下降法

神经网络的训练

DropOut

使用tensorFlow完成实验


全连接BP神经网络

前馈神经网络(feedforward neural network)是最朴素的神经网络,通常我们所说的前馈神经网络有两种,一种叫反向传播网络(Back propagation Networks)也可简称为BP网络;一种叫做径向基函数神经网络(RBF Network)

网络结构

前馈神经网络的结构不固定,一般神经网络包括输入层、隐层和输出层,下面的图一的神经网络由两层,每层4个节点。第二个神经网络有两个隐层,第一层5个节点,第二层3个节点,最后一层输出层只有一个节点。神经网络有很多种设计模式,并在不同的模式下产生不同的效果。

前馈神经网络  前馈神经网络

  神经网络的复杂之处在于他的组成结构爱太复杂,神经元太多,为了方便简介,我们设计一个最简单的BP网络结构,如下图所示。

前馈神经网络

  这是一个只有两层的神经网络,x我们也让他最简化,就一个实数,我们规定隐层h和输出层o这两层都是$z=wx+b$和$f(z)=\frac{1}{1+e^{-z}}$的组合,一旦输入样本x和标签y之后,模型就开始训练了。那么我们的问题就变成了求隐层的w、b和输出层的w、b四个参数的过程。

开始训练

  我们想要得到$y=wx+b$中的w和b,我们有众多的样本x和标签y,在这里写作y和x的关系,假设拟合的过程中有这样的一个参数$e$代表error,表示误差的意思,$y=wx+b+e$

  当我们有n对x和y那么就有n个$e$,我们试着把n个$e$都加起来表示一个误差总量,为了不让残差正负抵消我们取平方或者取绝对值,本文取平方。这种误差我们称为“残差”,也就是我们建模之后进行拟合出的结果和真实结果之间的差值。损失函数Loss还有一种称呼叫做“代价函数Cost”,

$$Loss=\sum_{i=1}^{n}e_i^2=\sum_{i=1}^{n}(y_i-(wx_i+b))^2$$

  现在我们要做的就是找到一个比较好的w和b,使得整个Loss尽可能的小,越小说明我们训练出来的模型越好。

梯度下降法

  老规矩,求最小值我们一般中梯度下降算法,通过迭代不断的优化待定系数w和b。我们的残差到底是一个怎样的函数呢,他的图形到底长什么样子呢?到底该怎么求他的最小值呢?OK,为了方便读者理解,我把Loss函数给你们画出来。

$$Loss=\sum_{i=1}^{n}(x_i^2w^2+b^2+2x_iwb-2y_ib-2x_iy_iw+y_i^2)=Aw^2+Bb^2+Cwb+Db+Dw+Eb+F$$

前馈神经网络

  我们初始化一个$w_o$和$b_0$,带到Loss里面去,这个点($w_o,b_o,Loss_o$)会出现在碗壁的某个位置,而我们的目标位置是碗底,那就慢慢的一点一点的往底部挪吧。

$$x_{n+1}=x_n-\eta \frac{df(x)}{dx}$$

  $\eta$是学习率,也就是每次挪动的步长,$\eta$大每次迭代的脚步就大,$\eta$小每次迭代的脚步就小,我们只有取到合适的$\eta$才能尽可能的接近最小值而不会因为步子太大越过了最小值。到后面每次移动的水平距离实在逐步减小的,原因就是因为整个函数圆乎乎的底部斜率在降低,吃个栗子:

前馈神经网络

如图所示,当$x_n=3$时,$-\eta\frac{f(x)}{dx}$为负数,更新后$x_{n+1}$会减小;当$x_n=-3$时,$-\eta\frac{f(x)}{dx}$为正数,更新后$x_{n+1}$还是会减小。这总函数其实就是凸函数。满足$f(\frac{x_i+x_2}{2})=\frac{f(x_i)+f(x_2)}{2}$都是凸函数。沿着梯度的方向是下降最快的。

  我们初始化$(w_0,b_0,Loss_o)$后下一步就水到渠成了,

$$w_1=w_o-\eta \frac{\partial Loss}{\partial w},b_1=b_o-\eta \frac{\partial Loss}{\partial b}$$

  有了梯度和学习率的$\eta$乘积之后,当这个点逐渐接近“碗底”的时候,偏导也随之下降,移动步伐也会慢慢变小,收敛会更为平缓,不会轻易出现“步子太大”而越过最低的情况。一轮一轮迭代,直到每次更新的值非常小,损失值不在减小就可以判断为训练结束,此时得到的(w,b)就是我们要求的模型。

神经网络的训练

  哈哈哈,是不是发现我刚才讲的明明是线性回归模型的训练,和大家想知道的神经网络的训练有毛线关系呀!你们说的没错,就是有一毛钱的关系,嘿嘿[笑脸]!

前馈神经网络

这个网络用函数表达式写的话如下所示:

第一层(隐藏层)  $\begin{matrix}z_h=w_nx+b_n,&y_h=\frac{1}{1+e^{-z_h}}\end{matrix}$

第二层(输出层)  $\begin{matrix}z_o=w_oy_h+b_o,&y_o=\frac{1}{1+e^{-z_o}}\end{matrix}$

接下来的工作就是把$w_h、b_h、w_o、b_o$参数利用梯度下降算法求出来,把损失函数降低到最小,那么我们的模型就训练出来呢。

第一步:准备样本,每一个样本$x_i$对应标签$y_i$。

第二步:清洗数据,清洗数据的目的是为了帮助网络更高效、更准确地做好分类。

第三步:开始训练,

$Loss=\sum_{i=1}^{n}(y_{oi}-y_i)^2$

我们用这四个表达式,来更新参数。

$$(w_h)^n=(w_h)^{n-1}-\eta \frac{\partial Loss}{\partial w_h}$$

$$(b_h)^n=(b_h)^{n-1}-\eta \frac{\partial Loss}{\partial b_h}$$

$$(w_o)^n=(w_o)^{n-1}-\eta \frac{\partial Loss}{\partial w_o}$$

$$(b_o)^n=(b_o)^{n-1}-\eta \frac{\partial Loss}{\partial b_o}$$

问题来了,$\frac{\partial Loss}{\partial w_h}$、$\frac{\partial Loss}{\partial b_h}$、$\frac{\partial Loss}{\partial w_o}$、$\frac{\partial Loss}{\partial b_o}$这4个值怎么求呢?

$$Loss=\sum_{i=1}^{n}(y_{oi}-y_i)^2\Rightarrow Loss=\frac{1}{2}\sum_{i=1}^{n}(y_{oi}-y_i)^2$$

配一个$\frac{1}{2}$出来,为了后面方便化简。

$$\frac{\partial Loss}{\partial w_h}=\frac{\partial \sum_{i=1}^{n}(y_{oi}-y_i)^2}{\partial w_o}=\frac{\partial \sum_{i=1}^{n}y_{oi}}{w_o}=\sum_{i=1}^{n}\frac{\partial y_{oi}}{\partial z_o}·\frac{z_o}{w_o}=\sum_{i=1}^{n}\frac{\partial y_{oi}}{\partial z_o}·\frac{z_o}{y_h}·\frac{\partial y_h}{\partial z_h}·\frac{\partial z_h}{\partial w_h}$$

其他三个参数,和上面类似,这是一种“练乘型”求导方式。我们的网络两层就4个连乘,如果是10层,那么就是20个连乘。但一层网络的其中一个节点连接着下一层的其他节点时,那么这个节点上的系数的偏导就会通过多个路径传播过去,从而形成“嵌套型关系”。

DropOut

  DropOut是深度学习中常用的方法,主要是为了克服过拟合的现象。全连接网络极高的VC维,使得它的记忆能力非常强,甚至把一下无关紧要的细枝末节都记住,一来使得网络的参数过多过大,二来这样训练出来的模型容易过拟合。

  DropOut:是指在在一轮训练阶段临时关闭一部分网络节点。让这些关闭的节点相当去去掉。如下图所示去掉虚线圆和虚线,原则上是去掉的神经元是随机的。

前馈神经网络

 python代码实现MNIST手写数字识别

  哈哈哈哈….这次作者终于要写代码了,是的这次我一定写,emmmm,虽然现在以及11.35了,但是我还是要坚持把代码写完。

  我们开看看我们上面学的全连接神经网络到底能做什么——手写数字识别。

MNIST是一个由美国由美国邮政系统开发的手写数字识别数据集。手写内容是0~9,一共有60000个图片样本,我们可以到MNIST官网免费下载,这官网的网页做的好粗糙呀,一点都没有国际型大网站的样子,可能国外主办方认为我把核心的东西给你讲了就行了,好不好看我不管。总共4个文件,该文件是二进制内容。

train-images-idx3-ubyte.gz:  training set images (9912422 bytes)   图片样本,用来训练模型
train-labels-idx1-ubyte.gz:  training set labels (28881 bytes)    图片样本对应的数字标签
t10k-images-idx3-ubyte.gz:   test set images (1648877 bytes)     测试样本
t10k-labels-idx1-ubyte.gz:   test set labels (4542 bytes)      测试样本对应的数字标签

我们下载下来的文件是.gz后缀的,表明是一个压缩文件,我们设计代码的时候,需要考虑对文件进行解压。

使用tensorFlow完成实验

这段代码在TensorFlow官网的Github上面也是有的,地址:https://github.com/tensorflow/tensorflow,文件目录在:tensorflow/tensorflow/examples/tutorials/mnist

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/159283.html

(0)
飞熊的头像飞熊bm

相关推荐

发表回复

登录后才能评论
极客之音——专业性很强的中文编程技术网站,欢迎收藏到浏览器,订阅我们!