Pandas 中缺失值NaN的判断, 删除 及 替换

不管现实多么惨不忍睹,都要持之以恒地相信,这只是黎明前短暂的黑暗而已。不要惶恐眼前的难关迈不过去,不要担心此刻的付出没有回报,别再花时间等待天降好运。真诚做人,努力做事!你想要的,岁月都会给你。Pandas 中缺失值NaN的判断, 删除 及 替换,希望对大家有帮助,欢迎收藏,转发!站点地址:www.bmabk.com,来源:原文

当使用pandas读取csv文件时,如果元素为空,则将其视为缺失值NaN(Not a Number, 非数字)。

使用dropna()方法删除缺失值,使用fillna()方法用其他值替换(填充)缺失值。

如果要提取包含缺失值的行或列,使用isnull()方法确定元素是否缺失。

1. 检查缺失值NaN

例如,读取并使用包含带read_csv的空格的csv文件。

import pandas as pd
import numpy as np
import math

df = pd.read_csv('./data/05/sample_pandas_normal_nan.csv')
print(df)
#       name   age state  point  other
# 0    Alice  24.0    NY    NaN    NaN
# 1      NaN   NaN   NaN    NaN    NaN
# 2  Charlie   NaN    CA    NaN    NaN
# 3     Dave  68.0    TX   70.0    NaN
# 4    Ellen   NaN    CA   88.0    NaN
# 5    Frank  30.0   NaN    NaN    NaN

使用pandas.isnull() 检查所有缺失的值:

print(df.isnull())
# 或者 
print(pd.isnull(df))
#     name    age  state  point  other
# 0  False  False  False   True   True
# 1   True   True   True   True   True
# 2  False   True  False   True   True
# 3  False  False  False  False   True
# 4  False   True  False  False   True
# 5  False  False   True   True   True

检查 ‘name’ 列缺失的值:

print(df['name'].isnull())
# 0    False
# 1     True
# 2    False
# 3    False
# 4    False
# 5    False
Name: name, dtype: bool

也可以使用numpy.isnan() 和math.isnan() (但是需要分别导入NumPy和math):

print(pd.isnull(df.at[0, 'point']))
print(np.isnan(df.at[0, 'point']))
print(math.isnan(df.at[0, 'point']))
# True
# True
# True

2. Pandas中NaN的类型

在Pandas中,将None,np.nan,math.nan和pd.np.nan视为缺失值NaN

s_nan = pd.Series([None, np.nan, math.nan, pd.np.nan])
print(s_nan)
# 0   NaN
# 1   NaN
# 2   NaN
# 3   NaN
# dtype: float64

print(s_nan[0])
print(type(s_nan[0]))
# nan
# <class 'numpy.float64'>

print(s_nan.isnull())
# 0    True
# 1    True
# 2    True
# 3    True
# dtype: bool

3. NaN的删除 dropna()

使用dropna()方法删除缺失值。

默认情况下,将返回新对象,并且不会更改原始对象,但是参数inplace = True会更改原始对象本身。

print(df)
#       name   age state  point  other
# 0    Alice  24.0    NY    NaN    NaN
# 1      NaN   NaN   NaN    NaN    NaN
# 2  Charlie   NaN    CA    NaN    NaN
# 3     Dave  68.0    TX   70.0    NaN
# 4    Ellen   NaN    CA   88.0    NaN
# 5    Frank  30.0   NaN    NaN    NaN
3.1 删除所有值均缺失的行/列

如果指定了参数how =‘all’,则将删除所有缺少值的行。

print(df.dropna(how='all'))
#       name   age state  point  other
# 0    Alice  24.0    NY    NaN    NaN
# 2  Charlie   NaN    CA    NaN    NaN
# 3     Dave  68.0    TX   70.0    NaN
# 4    Ellen   NaN    CA   88.0    NaN
# 5    Frank  30.0   NaN    NaN    NaN

如果设置axis = 1,则将删除所有缺少值的列。

print(df.dropna(how='all', axis=1))
#       name   age state  point
# 0    Alice  24.0    NY    NaN
# 1      NaN   NaN   NaN    NaN
# 2  Charlie   NaN    CA    NaN
# 3     Dave  68.0    TX   70.0
# 4    Ellen   NaN    CA   88.0
# 5    Frank  30.0   NaN    NaN

删除所有缺少值的行和列的数据:

df2 = df.dropna(how='all').dropna(how='all', axis=1)
print(df2)
#       name   age state  point
# 0    Alice  24.0    NY    NaN
# 2  Charlie   NaN    CA    NaN
# 3     Dave  68.0    TX   70.0
# 4    Ellen   NaN    CA   88.0
# 5    Frank  30.0   NaN    NaN
3.2 删除至少包含一个缺失值的行/列

基于上面删除所有缺少值的行和列的数据df2 :

print(df2)
#       name   age state  point
# 0    Alice  24.0    NY    NaN
# 2  Charlie   NaN    CA    NaN
# 3     Dave  68.0    TX   70.0
# 4    Ellen   NaN    CA   88.0
# 5    Frank  30.0   NaN    NaN

如果指定了参数how =‘any’,则将删除至少包含一个缺失值的行。默认值为how =‘any’。

print(df2.dropna(how='any'))
#    name   age state  point
# 3  Dave  68.0    TX   70.0

print(df2.dropna())
#    name   age state  point
# 3  Dave  68.0    TX   70.0

如果设置axis = 1,则将删除包含至少一个缺失值的列将被删除。

print(df2.dropna(how='any', axis=1))
#       name
# 0    Alice
# 2  Charlie
# 3     Dave
# 4    Ellen
# 5    Frank
3.3 根据不缺少值的元素数量删除行/列

通过在参数thresh中指定数字,可以根据不缺少值的元素数量删除行和列。

例如,如果thresh = 3,则保留包含三个或更多个不丢失值的元素的行,并删除其他行(包含两个或更多个不丢失值的元素的行)。

print(df.dropna(thresh=3))
#     name   age state  point  other
# 0  Alice  24.0    NY    NaN    NaN
# 3   Dave  68.0    TX   70.0    NaN
# 4  Ellen   NaN    CA   88.0    NaN

如果axis= 1,则应用于列。

print(df.dropna(thresh=3, axis=1))
#       name   age state
# 0    Alice  24.0    NY
# 1      NaN   NaN   NaN
# 2  Charlie   NaN    CA
# 3     Dave  68.0    TX
# 4    Ellen   NaN    CA
# 5    Frank  30.0   NaN
3.4 删除特定行/列中缺少值的列/行

如果要基于特定的行/列删除,请在列表的参数子集中指定要定位的行/列标签。由于它必须是列表,因此请至少指定一个目标,例如subset = [‘name’]。 默认情况下,子集指定的列中缺少值的行将被删除。

print(df.dropna(subset=['age']))
#     name   age state  point  other
# 0  Alice  24.0    NY    NaN    NaN
# 3   Dave  68.0    TX   70.0    NaN
# 5  Frank  30.0   NaN    NaN    NaN

如果指定了多列,则默认为删除所有缺少指定值的行。

print(df.dropna(subset=['age', 'state']))
#     name   age state  point  other
# 0  Alice  24.0    NY    NaN    NaN
# 3   Dave  68.0    TX   70.0    NaN

如果参数how =‘all’,则仅删除所有指定列均缺少值的行。

print(df.dropna(subset=['age', 'state'], how='all'))
#       name   age state  point  other
# 0    Alice  24.0    NY    NaN    NaN
# 2  Charlie   NaN    CA    NaN    NaN
# 3     Dave  68.0    TX   70.0    NaN
# 4    Ellen   NaN    CA   88.0    NaN
# 5    Frank  30.0   NaN    NaN    NaN

4. 缺失值NaN的替换(填充) fillna()

可以使用fillna()方法将缺失值替换为任意值。

默认情况下,将返回新对象,并且不会更改原始对象,但是参数inplace = True会更改原始对象本身。

print(df)
#       name   age state  point  other
# 0    Alice  24.0    NY    NaN    NaN
# 1      NaN   NaN   NaN    NaN    NaN
# 2  Charlie   NaN    CA    NaN    NaN
# 3     Dave  68.0    TX   70.0    NaN
# 4    Ellen   NaN    CA   88.0    NaN
# 5    Frank  30.0   NaN    NaN    NaN
4.1 用通用值统一替换

如果指定要用参数替换的值,则所有缺少的值NaN都将替换为该值。

print(df.fillna(0))
#       name   age state  point  other
# 0    Alice  24.0    NY    0.0    0.0
# 1        0   0.0     0    0.0    0.0
# 2  Charlie   0.0    CA    0.0    0.0
# 3     Dave  68.0    TX   70.0    0.0
# 4    Ellen   0.0    CA   88.0    0.0
# 5    Frank  30.0     0    0.0    0.0
4.2 为每列替换不同的值

将字典指定为参数时,每列将替换一个不同的值。字典键是列标签(列名),而值是要替换的值。未指定的列仍缺少值NaN。

print(df.fillna({'name': 'XXX', 'age': 20, 'point': 0}))
#       name   age state  point  other
# 0    Alice  24.0    NY    0.0    NaN
# 1      XXX  20.0   NaN    0.0    NaN
# 2  Charlie  20.0    CA    0.0    NaN
# 3     Dave  68.0    TX   70.0    NaN
# 4    Ellen  20.0    CA   88.0    NaN
# 5    Frank  30.0   NaN    0.0    NaN

不仅可以指定字典,还可以指定pandas.Series。具有与pandas.Series中的标签匹配的列标签(列名)的列中缺少的值将替换为pandas.Series值。与pandas.Series标签不对应的列仍然缺少值。

s_for_fill = pd.Series(['ZZZ', 100], index=['name', 'age'])
print(s_for_fill)
# name    ZZZ
# age     100
# dtype: object

print(df.fillna(s_for_fill))
#       name    age state  point  other
# 0    Alice   24.0    NY    NaN    NaN
# 1      ZZZ  100.0   NaN    NaN    NaN
# 2  Charlie  100.0    CA    NaN    NaN
# 3     Dave   68.0    TX   70.0    NaN
# 4    Ellen  100.0    CA   88.0    NaN
# 5    Frank   30.0   NaN    NaN    NaN
4.3 用每列的平均值,中位数,众数等替换

可以使用mean()方法计算每列的平均值。结果是pandas.Series。缺失值将被排除并计算。

print(df.mean())
# age      40.666667
# point    79.000000
# other          NaN
# dtype: float64

如果将此pandas.Series指定为fillna()的参数,则如上所述,将相应列中的缺失值替换为平均值。

print(df.fillna(df.mean()))
#       name        age state  point  other
# 0    Alice  24.000000    NY   79.0    NaN
# 1      NaN  40.666667   NaN   79.0    NaN
# 2  Charlie  40.666667    CA   79.0    NaN
# 3     Dave  68.000000    TX   70.0    NaN
# 4    Ellen  40.666667    CA   88.0    NaN
# 5    Frank  30.000000   NaN   79.0    NaN

同样,如果要替换中位数,请使用中位数()方法。在偶数的情况下,两个中心值的平均值是中值。

print(df.fillna(df.median()))
#       name   age state  point  other
# 0    Alice  24.0    NY   79.0    NaN
# 1      NaN  30.0   NaN   79.0    NaN
# 2  Charlie  30.0    CA   79.0    NaN
# 3     Dave  68.0    TX   70.0    NaN
# 4    Ellen  30.0    CA   88.0    NaN
# 5    Frank  30.0   NaN   79.0    NaN
4.4 替换为上一个或下一个值

通过使用method参数,可以替换之前和之后的值,而不是指定的值。 如果method =‘ffill’,它将被以前的值替换;如果method =‘bfill’,将被后面的值替换。对于时间序列数据很有用。

print(df.fillna(method='ffill'))
#       name   age state  point  other
# 0    Alice  24.0    NY    NaN    NaN
# 1    Alice  24.0    NY    NaN    NaN
# 2  Charlie  24.0    CA    NaN    NaN
# 3     Dave  68.0    TX   70.0    NaN
# 4    Ellen  68.0    CA   88.0    NaN
# 5    Frank  30.0    CA   88.0    NaN

print(df.fillna(method='bfill'))
#       name   age state  point  other
# 0    Alice  24.0    NY   70.0    NaN
# 1  Charlie  68.0    CA   70.0    NaN
# 2  Charlie  68.0    CA   70.0    NaN
# 3     Dave  68.0    TX   70.0    NaN
# 4    Ellen  30.0    CA   88.0    NaN
# 5    Frank  30.0   NaN    NaN    NaN

使用参数limit,可以指定连续替换的最大数量。

print(df.fillna(method='bfill', limit=1))
#       name   age state  point  other
# 0    Alice  24.0    NY    NaN    NaN
# 1  Charlie   NaN    CA    NaN    NaN
# 2  Charlie  68.0    CA   70.0    NaN
# 3     Dave  68.0    TX   70.0    NaN
# 4    Ellen  30.0    CA   88.0    NaN
# 5    Frank  30.0   NaN    NaN    NaN

参考博客:

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/162826.html

(0)
飞熊的头像飞熊bm

相关推荐

发表回复

登录后才能评论
极客之音——专业性很强的中文编程技术网站,欢迎收藏到浏览器,订阅我们!