文章目录
1. Optuna简介
1.1 Optuna 介绍
Optuna官网: https://optuna.org/
Optuna是一个开源的超参数优化(HPO)框架,用于自动执行超参数的搜索空间。 为了找到最佳的超参数集,Optuna使用贝叶斯方法。 它支持下面列出的各种类型的采样器:
- GridSampler (使用网格搜索)
- RandomSampler (使用随机采样)
- TPESampler (使用树结构的Parzen估计器算法)
- CmaEsSampler (使用CMA-ES算法)
一个极简的 Optuna 的优化程序中只有三个最核心的概念,目标函数(objective),单次试验(trial),和研究(study)。其中
- objective 负责定义待优化函数并指定参/超参数数范围
- trial 对应着 objective 的单次执行
- study 则负责管理优化,决定优化的方式,总试验的次数、试验结果的记录等功能。
1.2 Optuna 安装
可以选择基于pip的安装或者基于conda的安装方式。
Optuna is available at the Python Package Index and on Anaconda Cloud.
pip install optuna
conda install -c conda-forge optuna
1.3 Optuna 示例
下面举一个简单的例子,有助于大家的理解:
定义
x
,
y
∈
(
−
10
,
10
)
x,y∈(−10,10)
x,y∈(−10,10),求
f
(
x
)
=
(
x
+
y
)
2
f(x)=(x+y)^2
f(x)=(x+y)2 取得最大值时,
x
,
y
x,y
x,y 的取值?
import optuna
def objective(trial):
x = trial.suggest_uniform('x', -10, 10)
y = trial.suggest_uniform('y', -10, 10)
return (x + y) ** 2
study = optuna.create_study(direction='maximize')
study.optimize(objective, n_trials=100)
print(study.best_params)
print(study.best_value)
更多关于 Optuna 的基本介绍可以参考博客:
- 使用Optuna的XGBoost模型的高效超参数优化: https://blog.csdn.net/weixin_26752765/article/details/108225744
2. LGBM和XGBoost调参汇总
2.1 LGBM
2.1.1 定义Objective
from lightgbm import LGBMRegressor
import optuna
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split, KFold
import optuna.integration.lightgbm as oplgb
def objective(trial):
X_train, X_test, y_train, y_test=train_test_split(data, target, train_size=0.3)# 数据集划分
param = {
'metric': 'rmse',
'random_state': 48,
'n_estimators': 20000,
'reg_alpha': trial.suggest_loguniform('reg_alpha', 1e-3, 10.0),
'reg_lambda': trial.suggest_loguniform('reg_lambda', 1e-3, 10.0),
'colsample_bytree': trial.suggest_categorical('colsample_bytree', [0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0]),
'subsample': trial.suggest_categorical('subsample', [0.4,0.5,0.6,0.7,0.8,1.0]),
'learning_rate': trial.suggest_categorical('learning_rate', [0.006,0.008,0.01,0.014,0.017,0.02]),
'max_depth': trial.suggest_categorical('max_depth', [5, 7, 9, 11, 13, 15, 17, 20, 50]),
'num_leaves' : trial.suggest_int('num_leaves', 1, 1000),
'min_child_samples': trial.suggest_int('min_child_samples', 1, 300),
'cat_smooth' : trial.suggest_int('cat_smooth', 1, 100)
}
lgb=LGBMRegressor(**param)
lgb.fit(X_train, y_train, eval_set=[(X_test, y_test)], early_stopping_rounds=100, verbose=False)
pred_lgb=lgb.predict(X_test)
rmse = mean_squared_error(y_test, pred_lgb, squared=False)
return rmse
2.1.2 调参try
study=optuna.create_study(direction='minimize')
n_trials=50 # try50次
study.optimize(objective, n_trials=n_trials)
2.1.3 绘图
optuna.visualization.plot_optimization_history(study)# 绘制
optuna.visualization.plot_parallel_coordinate(study)#
optuna.visualization.plot_param_importances(study)#
2.1.4 最佳参数
params=study.best_params
params['metric'] = 'rmse'
2.2 XGBOOST
2.2.1 定义Objectove
def objective(trial):
data = train.iloc[:, :-1]
target = train.target
train_x, test_x, train_y, test_y = train_test_split(data, target, test_size=0.3, random_state=42)
param = {
'lambda': trial.suggest_loguniform('lambda', 1e-3, 10.0),
'alpha': trial.suggest_loguniform('alpha', 1e-3, 10.0),
'colsample_bytree': trial.suggest_categorical('colsample_bytree', [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]),
'subsample': trial.suggest_categorical('subsample', [0.4, 0.5, 0.6, 0.7, 0.8, 1.0]),
'learning_rate': trial.suggest_categorical('learning_rate',
[0.008, 0.009, 0.01, 0.012, 0.014, 0.016, 0.018, 0.02]),
'n_estimators': 4000,
'max_depth': trial.suggest_categorical('max_depth', [5, 7, 9, 11, 13, 15, 17, 20]),
'random_state': trial.suggest_categorical('random_state', [24, 48, 2020]),
'min_child_weight': trial.suggest_int('min_child_weight', 1, 300),
}
model = xgb.XGBRegressor(**param)
model.fit(train_x, train_y, eval_set=[(test_x, test_y)], early_stopping_rounds=100, verbose=False)
preds = model.predict(test_x)
rmse = mean_squared_error(test_y, preds, squared=False)
return rmse
2.2.2 调参try
study = optuna.create_study(direction='minimize')
n_trials=1
study.optimize(objective, n_trials=n_trials)
print('Number of finished trials:', len(study.trials))
print("------------------------------------------------")
print('Best trial:', study.best_trial.params)
print("------------------------------------------------")
print(study.trials_dataframe())
print("------------------------------------------------")
2.2.3 绘图
optuna.visualization.plot_optimization_history(study).show()
#plot_parallel_coordinate: interactively visualizes the hyperparameters and scores
optuna.visualization.plot_parallel_coordinate(study).show()
'''plot_slice: shows the evolution of the search. You can see where in the hyperparameter space your search
went and which parts of the space were explored more.'''
optuna.visualization.plot_slice(study).show()
optuna.visualization.plot_contour(study, params=['alpha',
#'max_depth',
'lambda',
'subsample',
'learning_rate',
'subsample']).show()
#Visualize parameter importances.
optuna.visualization.plot_param_importances(study).show()
#Visualize empirical distribution function
optuna.visualization.plot_edf(study).show()
2.2.4 最佳参数
params=study.best_params
[参考博客] :
- 【机器学习】Optuna机器学习模型调参(LightGBM、XGBoost): https://blog.csdn.net/qq_43510916/article/details/113794486
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/162830.html