Numpy2_索引_Datawhale十月组队学习

不管现实多么惨不忍睹,都要持之以恒地相信,这只是黎明前短暂的黑暗而已。不要惶恐眼前的难关迈不过去,不要担心此刻的付出没有回报,别再花时间等待天降好运。真诚做人,努力做事!你想要的,岁月都会给你。Numpy2_索引_Datawhale十月组队学习,希望对大家有帮助,欢迎收藏,转发!站点地址:www.bmabk.com,来源:原文

Numpy学习|索引:


1.副本与视图


x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = x.copy()
y[0] = -1
print(x)
# [1 2 3 4 5 6 7 8]
print(y)
# [-1  2  3  4  5  6  7  8]

2.索引与切片


x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
print(x[::2, ::2])
# 首:尾:间隔
# [[11 13 15]
#  [21 23 25]
#  [31 33 35]]


x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
x[0::2, 1::3] = 0
print(x)
# 0行,2行,4行的 25列赋值为0
# [[11  0 13 14  0]
#  [16 17 18 19 20]
#  [21  0 23 24  0]
#  [26 27 28 29 30]
#  [31  0 33 34  0]]


x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
r = [0, 1, 2]
c = [2, 3, 4]
y = np.take(x, [r, c])
print(y)
# [[11 12 13]
#  [13 14 15]]

3.数组迭代


除了for循环,Numpy 还提供另外一种更为优雅的遍历方法。

apply_along_axis(func1d, axis, arr) Apply a function to 1-D slices along the given axis.

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])

y = np.apply_along_axis(np.sum, 0, x)
print(y)  # [105 110 115 120 125]
y = np.apply_along_axis(np.sum, 1, x)
print(y)  # [ 65  90 115 140 165]

y = np.apply_along_axis(np.mean, 0, x)
print(y)  # [21. 22. 23. 24. 25.]
y = np.apply_along_axis(np.mean, 1, x)
print(y)  # [13. 18. 23. 28. 33.]


def my_func(x):
    return (x[0] + x[-1]) * 0.5


y = np.apply_along_axis(my_func, 0, x)
print(y)  # [21. 22. 23. 24. 25.]
y = np.apply_along_axis(my_func, 1, x)
print(y)  # [13. 18. 23. 28. 33.]


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/165191.html

(0)
飞熊的头像飞熊bm

相关推荐

发表回复

登录后才能评论
极客之音——专业性很强的中文编程技术网站,欢迎收藏到浏览器,订阅我们!