介绍
单例模式(Singleton)保证一个类仅有一个实例,并提供一个访问它的全局访问点。
单例模式的结构图如下所示:
使用单例模式的原因
对一些类来说,只有一个实例是很重要的。如何才能保证一个类只有一个实例并且这个实例易于被访问呢?
基于程序员之间的约定或是利用全局变量吗?
虽然这样或许也可以实现,但是单例模式确是更好的做法。因为仅仅靠约定或是全局变量,如果重新new一个对象,还是可以创建新的实例。
经典的单例模式
现在我们先来看看经典的单例模式写法:
public class Singleton
{
private static Singleton? _instance;
private Singleton() { }
public static Singleton GetInstance()
{
if(_instance == null)
_instance = new Singleton();
return _instance;
}
}
private static Singleton? _instance;
声明了一个静态的类变量,静态类变量在类的所有实例之间共享, 与类关联而不是与类的实例关联,它在整个应用程序域中只有一个实例。
private Singleton() { }
私有的构造函数,这使得我们无法通过:
Singleton Singleton = new Singleton();
这种写法来创建它的实例,这样写会报错,如下所示:
public static Singleton GetInstance()
{
if(_instance == null)
_instance = new Singleton();
return _instance;
}
该方法是获得本类实例的唯一全局访问点。
如果实例不存在,在类的内部可以通过new操作符来获取一个实例,否则返回已有的实例。
internal class Program
{
static void Main(string[] args)
{
Singleton singleton1 = Singleton.GetInstance();
Singleton singleton2 = Singleton.GetInstance();
if (singleton1 == singleton2)
Console.WriteLine("两个对象是相同的实例");
}
}
比较两个对象看看它们是不是同一个实例,运行结果如下所示:
多线程下的单例模式
上述代码在多线程情况下会存在问题,如果有多个线程同时访问Singleton类调用GetInstance方法,会有可能造成创建多个实例。
查看以下代码:
internal class Program
{
static void Main(string[] args)
{
// 创建并启动两个任务
Task task1 = Task.Factory.StartNew(Method1);
Task task2 = Task.Factory.StartNew(Method2);
Task.WaitAll(task1, task2);
Console.WriteLine("所有任务完成");
void Method1()
{
Console.WriteLine("Task 1 is running.");
Task.Delay(1000).Wait();
Singleton singleton1 = Singleton.GetInstance();
Console.WriteLine(singleton1.GetHashCode());
}
void Method2()
{
Console.WriteLine("Task 2 is running.");
Task.Delay(1000).Wait();
Singleton singleton2 = Singleton.GetInstance();
Console.WriteLine(singleton2.GetHashCode());
}
}
}
运行结果如下所示:
两个对象的哈希码不同,在C#中,每个对象都有一个GetHashCode
方法,该方法返回该对象的哈希码。默认情况下,GetHashCode
方法是根据对象的内存地址生成的,因此两个不同的实例在内存中有不同的地址,它们的哈希码通常也是不同的。然而,这并不是说哈希码不同就一定表示两个对象是不同的。因为哈希码是一个有限的整数,存在哈希冲突的可能性。两个不同的对象可能具有相同的哈希码,这被称为哈希冲突。因此,不能仅仅通过比较哈希码就断定两个对象是相同的还是不同的。
但是我们在这里我们可以这样进行简单的判断。
那么该如何解决这个问题呢?
使用lock
C#中可以使用lock来解决。lock
语句可确保在任何时候最多只有一个线程执行其主体。
可以这样进行改写:
public class Singleton
{
private static Singleton? _instance;
private static readonly object _syncRoot = new object();
private Singleton() { }
public static Singleton GetInstance()
{
lock (_syncRoot)
{
if (_instance == null)
_instance = new Singleton();
}
return _instance;
}
}
private static readonly object _syncRoot = new object();
程序运行时创建一个静态只读的辅助对象。
public static Singleton GetInstance()
{
lock (_syncRoot)
{
if (_instance == null)
_instance = new Singleton();
}
return _instance;
}
lock语句确保在任何时候最多只有一个线程执行其主体。
现在再来看看运行结果:
双重锁定
现在两个对象的哈希码一样了,在这里我们可以简单的认为是同一个实例了。
但是每次都要执行lock语句会影响性能,还需要改进:
public class Singleton
{
private static Singleton? _instance;
private static readonly object _syncRoot = new object();
private Singleton() { }
public static Singleton GetInstance()
{
if (_instance == null)
{
lock (_syncRoot)
{
if(_instance == null)
{
_instance = new Singleton();
}
}
}
return _instance;
}
这样子当存在_instance
时,直接返回,没有执行lock语句。为什么执行两次if(_instance == null)
判断是因为当_instance == null
时,如果同时有两个线程调用GetInstance
方法,它们都可以通过第一次判断,由于lock
的机制,这两个线程只有一个进去,另一个在外排队等候,必须等上一个进入并且退出之后,第二个线程才能进入,而此时如果没有第二层的判断,那么第一个线程与第二个线程都会创建新的实例,而添加了这个判断之后,第一个线程创建了实例,_instanc
就不为空,第二个线程就无法创建新的实例了。
现在再来看看运行结果:
静态初始化
其实在实际应用中,C#也可以采用静态初始化的方法,这种方法不需要开发人员显式地编写线程安全代码,即可解决多线程环境下不安全的问题。
public sealed class Singleton
{
private static readonly Singleton _instance = new Singleton();
private Singleton() { }
public static Singleton GetInstance()
{
return _instance;
}
}
使用sealed
关键字表示是密封类,阻止发生派生,因为派生可能会增加实例。
private static readonly Singleton _instance = new Singleton();
在第一次引用类的任何成员时创建实例,公共语言运行时负责处理变量初始化。
现在再来看看运行结果:
由于这种静态初始化的方式是在自己被加载时就将自己实例化,所以被形象地称之为饿汉单例类,原先的单例模式的处理方式是要在第一次被引用时,才会将自己实例化,所以就被称为懒汉单例类。
总结
本文介绍了在C#中如何使用单例模式,并介绍了在多线程模式下单例模式可能存在的问题及其解决方法,希望对你有所帮助。
参考
1、《Head First 设计模式(中文版)》
2、《大话设计模式》
3、《设计模式:可复用面向对象软件的基础》
原文始发于微信公众号(DotNet学习交流):C#设计模式之单例模式
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/230656.html