BigDecimal 为什么可以保证精度不丢失?

戳上方蓝字“Java知音”关注我

在金融领域,为了保证数据的精度,往往会使用BigDecimal。本文就来探讨下为什么BigDecimal可以保证精度不丢失。

类介绍

首先来看一下BigDecimal的类声明以及几个属性:

public class BigDecimal extends Number implements Comparable<BigDecimal{
    // 该BigDecimal的未缩放值
    private final BigInteger intVal;
    // 精度,可以理解成小数点后的位数
    private final int scale;
    // BigDecimal中的十进制位数,如果位数未知,则为0(备用信息)
    private transient int precision;
    // Used to store the canonical string representation, if computed.
    // 这个我理解就是存实际的BigDecimal值
    private transient String stringCache;
    // 扩大成long型数值后的值
    private final transient long intCompact;
}

从例子入手

通过debug来发现源码中的奥秘是了解类运行机制很好的方式。请看下面的testBigDecimal方法:

@Test
public void testBigDecimal() {
    BigDecimal bigDecimal1 = BigDecimal.valueOf(2.36);
    BigDecimal bigDecimal2 = BigDecimal.valueOf(3.5);
    BigDecimal resDecimal = bigDecimal1.add(bigDecimal2);
    System.out.println(resDecimal);
}

在执行了BigDecimal.valueOf(2.36)后,查看debug信息可以发现上述提到的几个属性被赋了值:

BigDecimal 为什么可以保证精度不丢失?

接下来进到add方法里面,看看它是怎么计算的:

/**
 * Returns a BigDecimal whose value is (this + augend), 
 * and whose scale is max(this.scale(), augend.scale()).
 */

public BigDecimal add(BigDecimal augend) {
    if (this.intCompact != INFLATED) {
        if ((augend.intCompact != INFLATED)) {
            return add(this.intCompact, this.scale, augend.intCompact, augend.scale);
        } else {
            return add(this.intCompact, this.scale, augend.intVal, augend.scale);
        }
    } else {
        if ((augend.intCompact != INFLATED)) {
            return add(augend.intCompact, augend.scale, this.intVal, this.scale);
        } else {
            return add(this.intVal, this.scale, augend.intVal, augend.scale);
        }
    }
}

看一下传进来的值:

BigDecimal 为什么可以保证精度不丢失?

进入第8行的add方法:

private static BigDecimal add(final long xs, int scale1, final long ys, int scale2) {
    long sdiff = (long) scale1 - scale2;
    if (sdiff == 0) {
        return add(xs, ys, scale1);
    } else if (sdiff < 0) {
        int raise = checkScale(xs,-sdiff);
        long scaledX = longMultiplyPowerTen(xs, raise);
        if (scaledX != INFLATED) {
            return add(scaledX, ys, scale2);
        } else {
            BigInteger bigsum = bigMultiplyPowerTen(xs,raise).add(ys);
            return ((xs^ys)>=0) ? // same sign test
                new BigDecimal(bigsum, INFLATED, scale2, 0)
                : valueOf(bigsum, scale2, 0);
        }
    } else {
        int raise = checkScale(ys,sdiff);
        long scaledY = longMultiplyPowerTen(ys, raise);
        if (scaledY != INFLATED) {
            return add(xs, scaledY, scale1);
        } else {
            BigInteger bigsum = bigMultiplyPowerTen(ys,raise).add(xs);
            return ((xs^ys)>=0) ?
                new BigDecimal(bigsum, INFLATED, scale1, 0)
                : valueOf(bigsum, scale1, 0);
        }
    }
}

这个例子中,该方法传入的参数分别是:xs=236,scale1=2,ys=35,scale2=1

该方法首先计算scale1 – scale2,根据差值走不同的计算逻辑,这里求出来是1,所以进入到最下面的else代码块(这块是关键):

  • 首先17行校验了一下数值范围
  • 18行将ys扩大了10的n次倍,这里n=raise=1,所以返回的scaledY=350
  • 接着就进入到20行的add方法:
private static BigDecimal add(long xs, long ys, int scale){
    long sum = add(xs, ys);
    if (sum!=INFLATED)
        return BigDecimal.valueOf(sum, scale);
    return new BigDecimal(BigInteger.valueOf(xs).add(ys), scale);
}

这个方法很简单,就是计算和,然后返回BigDecimal对象:

BigDecimal 为什么可以保证精度不丢失?

结论

所以可以得出结论:BigDecimal在计算时,实际会把数值扩大10的n次倍,变成一个long型整数进行计算,整数计算时自然可以实现精度不丢失。同时结合精度scale,实现最终结果的计算。

另外BigDecimal在使用时有一些注意事项,可以参考以下文档学习:

https://javaguide.cn/java/basis/bigdecimal.html

来源:juejin.cn/post/7348709938023940136

后端专属技术群

构建高质量的技术交流社群,欢迎从事编程开发、技术招聘HR进群,也欢迎大家分享自己公司的内推信息,相互帮助,一起进步!

文明发言,以交流技术职位内推行业探讨为主

广告人士勿入,切勿轻信私聊,防止被骗

BigDecimal 为什么可以保证精度不丢失?

加我好友,拉你进群

BigDecimal 为什么可以保证精度不丢失?

原文始发于微信公众号(Java知音):BigDecimal 为什么可以保证精度不丢失?

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/286912.html

(0)
小半的头像小半

相关推荐

发表回复

登录后才能评论
极客之音——专业性很强的中文编程技术网站,欢迎收藏到浏览器,订阅我们!