事务是区别于数据库与一般存储系统最为重要的功能。而分布式数据库的事务由于其难度极高,一直被广泛关注。可以说,不解决事务问题,一个分布式数据库会被认为是残缺的。而事务的路线之争,也向我们展示了分布式数据库发展的不同路径。
提到分布式事务,能想到的第一个概念就是原子提交。原子提交描述了这样的一类算法,它们可以使一组操作看起来是原子化的,即要么全部成功要么全部失败,而且其中一些操作是远程操作。Open/X 组织提出 XA 分布式事务标准就是原子化提交的典型代表,XA 被主流数据库广泛地实现,相当长的一段时间内竟成了分布式事务的代名词。
但是随着 Percolator 的出现,基于快照隔离的原子提交算法进入大众的视野,在 TiDB 实现 Percolator 乐观事务后,此种方案逐步达到生产可用的状态。
一、两阶段提交与三阶段提交
两阶段提交非常有名,其原因主要有两点:一个是历史很悠久;二是其定义是很模糊的,它首先不是一个协议,更不是一个规范,而仅仅是作为一个概念存在,故从传统的关系统数据库一致的最新的 DistributedSQL 中,我们都可以看到它的身影。
两阶段提交包含协调器与参与者两个角色。在第一个阶段,协调器将需要提交的数据发送给参与者,同时询问参与者是否能够提交该数据,而后参与者返回投票结果。在第二阶段,协调器根据参与者的投票结果,决定是提交还是取消这次事务,而后将结果发送给每个参与者,参与者根据结果来提交本地的事务。
可以看到两阶段提交的核心是协调器。它一般被实现为一个领导节点,你可以回忆一下领导选举那一讲。我们可以使用多种方案来选举领导节点,并根据故障检测机制来探测领导节点的健康状态,从而确定是否要重新选择一个领导节点作为协调器。另外一种常见的实现是由事务发起者来充当协调器,这样做的好处是协调工作被分散到多个节点上,从而降低了分布式事务的负载。
整个事务被分解为两个过程。
-
准备阶段。协调器向所有参与节点发送 Propose 消息,该消息中包含了该事务的全部信息。而后所有参与节点收到该信息后,进行提交决策——是否可以提交该事务,如果决定提交该事务,它们就告诉协调器同意提交;否则,它们告诉协调器应该终止该事务。协调器和所有参与者分别保存该决定的结果,用于故障恢复。
-
提交或终止。如果有任何一个参与者终止了该事务,那么所有参与者都会收到终止该事务的结果,即使他们自己认为是可以提交该事务的。而只有当所有参与者全票通过该事务时,协调器才会通知它们提交该事务。这就是原子提交的核心理念:全部成功或全部失败。
我们可以看到两阶段提交是很容易理解的,但是其中却缺少大量细节。比如数据是在准备阶段还是在提交阶段写入数据库?每个数据库对该问题的实现是不同的,目前绝大多数实现是在准备阶段写入数据。
两阶段提交正常流程是很容易理解的,它有趣的地方是其异常流程。由于有两个角色和两个阶段,那么异常流程就分为 4 种。
-
1、参与者在准备阶段失败。当协调者发起投票后,有一个参与者没有任何响应(超时)。协调者就会将这个事务标记为失败,这与该阶段投票终止该事务是同样的结果。这虽然保证了事务的一致性,但却降低了分布式事务整体的可用性。下一讲我会介绍 Spanner 使用 Paxos groups 来提高参与者的可用度。
-
2、参与者在投票后失败。这种场景描述了参与者投赞成票后失败了,这个时候必须保证该节点是可以恢复的。在其恢复流程里,需要首先与协调器取得联系,确认该事务最终的结果。然后根据其结果,来取消或者提交该事务。
-
3、协调器在投票后失败。这是第二个阶段,此时协调器和参与者都已经把投票结果记录下来了。如果协调器失败,我们可以将备用协调器启动,而后读取那个事务的投票结果,再向所有参与者发送取消或者提交该事务的消息。
-
4、协调器在准备阶段失败。这是在第一阶段,该阶段存在一个两阶段提交的缺点。在该阶段,协调器发送消息没有收到投票结果,这里所说的没有收到结果主要指结果没有记录到日志里面。此时协调器失败了,那么备用协调器由于缺少投票结果的日志,是不能恢复该事务的。甚至其不知道有哪些参与者参与了这个事务,从而造成参与者无限等待。所以两阶段提交又称为阻塞提交算法。
三阶段相比于两阶段主要是解决上述第 4 点中描述的阻塞状态。它的解决方案是在两阶段中间插入一个阶段,第一阶段还是进行投票,第二阶段将投票后的结果分发给所有参与者,第三阶段是提交操作。其关键点是在第二阶段,如果协调者在第二阶段之前崩溃无法恢复,参与者可以通过超时机制来释放该事务。一旦所有节点通过第二阶段,那么就意味着它们都知道了当前事务的状态,此时,不管协调者还是参与者崩溃都不会影响事务执行。
我们看到三阶段事务会存在两阶段不存在的一个问题,在第二阶段的时候,一些参与者与协调器失去联系,它们由于超时机制会中断事务。而如果另外一些参与者已经收到可以提交的指令,就会提交数据,从而造成脑裂的情况。
除了脑裂,三阶段还存在交互量巨大从而造成系统消息负载过大的问题。故三阶段提交很少应用在实际的分布式事务设计中。
两阶段与三阶段提交都是原子提交协议,它们可以实现各种级别的隔离性要求。在实际生产中,我们可以使用一种特别的事务隔离级别来提高分布式事务的性能,实现非阻塞事务。这种隔离级别就是快照隔离。
二、快照的隔离
它的隔离级别高于“读到已提交”,解决的是读到已提交无法避免的读偏序问题,也就是一条数据在事务中被读取,重复读取后可能会改变。
我们举一个快照隔离的读取例子,有甲乙两个事务修改同一个数据 X,其初始值为 2。甲开启事务,但不提交也不回退。此时乙将该数值修改为 10,提交事务。而后甲重新读取 X,其值仍然为 2,并没有读取到已经提交的最新数据 。
那么并发提交同一条数据呢?由于没有锁的存在,会出现写入冲突,通常只有其中的一个事务可以提交数据。这种特性被称为首先提交获胜机制。
快照隔离与序列化之间的区别是前者不能解决写偏序的问题,也就是并发事务操作的数据集不相交,当事务提交后,不能保证数据集的结果一致性。举个例子,对于两个事务 T1:b=a+1 和 T2:a=b+1,初始化 a=b=0。序列化隔离级别下,结果只可能是 (a=2,b=1) 或者 (a=1,b=2);而在快照隔离级别下,结果可能是 (a=1,b=1)。这在某些业务场景下是不能接受的。当然,目前有许多手段来解决快照隔离的写偏序问题,即序列化的快照隔离(SSI)。
实现 SSI 的方式有很多种,如通过一个统一的事务管理器,在提交时去询问事务中读取的数据在提交时是否已经被别的事务的提交覆盖了,如果是,就认为当前事务应标记为失败。另一些是通过在数据行上加锁,来阻止其他事务读取该事务锁定的数据行,从而避免写偏序的产生。
下面要介绍的 Percolator 正是实现了快照隔离,但是没有实现 SSI。因为可以看到 SSI 不论哪种实现都会影响系统的吞吐量。且 Percolator 本身是一种客户端事务方案,不能很好地保存状态。
三、Percolator 乐观事务
Percolator 是 Google 提出的工具包,它是基于 BigTable 的,并支持刚才所说的快照隔离。快照隔离是有多版本的,那么我们就需要有版本号,Percolator 系统使用一个全局递增时间戳服务器,来为事务产生单调递增的时间戳。每个事务开始时拿一个时间戳 t1,那么这个事务执行过程中可以读 t1 之前的数据;提交时再取一下时间戳 t2,作为这个事务的提交时间戳。
现在我们开始介绍事务的执行过程。与两阶段提交一样,我们使用客户端作为协调者,BigTable 的 Tablet Server 作为参与者。 除了每个 Cell 的数据存在 BigTable 外,协调者还将 Cell 锁信息、事务版本号存在 BigTable 中。简单来说,如果需要写 bal 列(balance,也就是余额)。在 BigTable 中实际存在三列,分别为 bal:data、bal:lock、bal:write。它们保存的信息如下所示。
-
1、bal:write 中存事务提交时间戳 commit_ts=>start_ts;
-
2、bal:data 这个 map 中存事务开始时间戳 start_ts=> 实际列数据;
-
3、bal:lock 存 start_ts=>(primary cell),Primary cell 是 Rowkey 和列名的组合,它在提交容错处理和事务冲突时使用,用来清理由于协调器失败导致的事务失败留下的锁信息。
文章将持续更新,欢迎关注公众号:服务端技术精选。欢迎点赞、关注、转发。
原文始发于微信公众号(服务端技术精选):分布式事务(上):除了 XA,还有哪些原子提交算法吗?
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/295777.html